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ABSTRACT
We present Peregrine, a malicious traffic detector that offloads
part of its computation to a programmable switch. The idea is to
partition detection, by moving the ML feature computation module
from a middlebox server to a switch data plane. The key innovation
unlocked—computing the ML input features over all traffic—results
in a significant improvement in detection performance: in our eval-
uation, up to 5.7x over the state of the art.
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1 INTRODUCTION
Network operators deploy Network Intrusion Detection Systems
(NIDS) that capture and analyze packet flows to identify malicious
traffic. The ideal NIDS should fulfil four requirements: (R1) observe
and analyze all network traffic at high speed to (R2) detect any
attack, (R3) as it happens, (R4) without generating false positives.

The most common NIDS detect and prevent attacks based on
their (known) signatures [13, 14, 16]. Their limitation is that they
are unable to detect zero-day attacks (R2) [5]. Another class of ma-
licious traffic detectors focus on spotting deviations from regular
traffic profiles, enabling detection of attacks for which there are no
defined signatures (R2). The most promising solutions of this class
leverage machine learning (ML) algorithms to learn traffic profiles
and identify statistical variations [4, 6, 7, 11, 17], achieving im-
pressive performance for zero-day detection (R4). However, these
systems face a performance challenge, due to the processing over-
head of the ML pipeline. As a result, most run offline [2, 3, 10, 12],
precluding real-time detection (R3). Recent middlebox-based de-
tection solutions [4, 11] perform detection online, but their limited
packet processing capabilities does not match the requirements
of today’s Terabit networks. Their practical deployment requires
heavy sampling (R1), seriously compromising detection perfor-
mance.
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Figure 1: Peregrine approach vs. SOTA

In this work, we ask: is it possible to perform malicious traffic
detection in Tbps networks without compromising detection perfor-
mance? We present Peregrine, a malicious traffic detector that
responds to this problem with a cross-layer approach that parti-
tions the detector pipeline. In Peregrine, the feature computation
module runs in a network switch, computing features over all traffic
(R1), while the online (R3) ML-based detector (R2, R4) runs in a
middlebox server.

The key challenge of our approach is dual: achieving generality
while complying with the severe computational constraints of a
network switch. On the one hand, our features need to be use-
ful enough for a diverse set of ML-based detection systems. On
the other hand, they need to be computable in a network switch.
We achieve this by computing several dozens of commonly used
features (close to one hundred)—for generality—and by resorting
to stream-like, approximated computations—to fit the switch con-
straints. The key takeaway is that it is better to compute these
approximated features over all traffic (R1) than to compute exact
features over sampled traffic only (as existing systems). In other
words, it is better to perform sampling after computing the ML
features, even if only approximated (Figure 1).

2 SYSTEM DESIGN
Peregrine computes features for every packet traversing the switch.
By moving feature computation to the data plane, we avoid the
packet sampling required by SOTA detection systems in real net-
work environments. Alongside per-packet computations, a feature
digest is periodically “pushed” into an ML inference pipeline in
the control plane. In our design process, we have abstracted the
following main principles.
Cross-layer design. To scale detection to Tbps speeds we split
the ML-based detection task, placing its components into either
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Figure 2: Peregrine vs Kitsune (SOTA) [11].

a middlebox server or a network switch. Specifically, by offload-
ing ML feature computation processing to the data plane, we are
targeting both high detection performance and deployability in
high-throughput networks.
Per-packet feature computation on a switch.We instrument the
data plane blocks to compute flow features as they process incoming
packets. The stages of a PISA pipeline enable basic per-packet
arithmetic operations and storing counters in stateful memory. By
storing a few selected counters per-flow, we are able to compute a
wide range of statistics and derive a sufficient number of features for
ML inference, incrementally, as each packet traverses the pipeline.
Per-epoch ML inference in a middlebox server. We configure
epoch values to define the sampling granularity at which the per-
packet computed features are sent to the ML inference component.
Our approach, a form of enriched record sampling, thus differs from
traditional packet sampling—which effectively skips most packets—
as the required sampling occurs only after feature computation
(Figure 1).

For generality, Peregrine collects features common to many
SOTA detectors, encompassing different flow keys: [MAC src, IP
src], [IP src], [IP src, IP dst], [5-tuple]. For each packet, we first in-
crement three basic counters for each flow key: number of packets,
number of bytes, squared number of bytes. Afterwards, we use these
counters to compute statistics that broadly characterize the traffic
patterns. Some statistics depend on a single flow direction (e.g.,
mean, standard deviation), while others encompass both inbound
and outbound traffic (e.g., magnitude, radius, approximate covari-
ance). We further observe the packet inter-arrival times for the
monitored flows and apply decay factors (four in our implementa-
tion) to maintain statistics for different “time windows".

The data-plane functionality of Peregrine is not tied to any
specific ML classification pipeline, by design. Rather, the features
computed in the data plane are generic enough to be used as input
to many different learning-based detection systems [1, 4, 11]. We
implemented Peregrine’s data plane components in an Intel Tofino
switch [9]. The classification module used in the Peregrine proto-
type is Kitsune’s KitNET neural network [11].

3 EVALUATION
The goal of this section is to show that Peregrine improves both
system and detection performance by moving the feature compu-
tation component to the network data plane. We evaluate against
Kitsune [11], a state-of-the-art NIDS, using datasets with labelled
attack traces [11, 15].
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Figure 3: Runtime performance

Figure 2 presents the Root Mean Squared Error (RMSE) of the
Area under the Curve (AUC) score—a global detection performance
metric useful in addressing the "tension" between precision and
recall—for each sampling rate over all attacks (lower results are
better). The sampling rate has a different meaning in the two ap-
proaches (recall Figure 1). In Kitsune, it represents the rate at which
packets entering the switch need to be sampled to fit within the
processing limitations of the system, capable only of a few Gbps
packet processing. In Peregrine, where all packets are processed in
the data plane, sampling refers instead to the rate at which a digest
is sent to the ML inference module, after feature computation. The
obtained RMSE values are significantly smaller with Peregrine,
decreasing up to 5.7x for the considered sampling rates. This demon-
strates the value of sampling only after the feature computation
module, thus computing statistics that consider all traffic.

Peregrine successfully compiles for the Tofino 2 T2NA [8] ar-
chitecture, and the entire computation runs in a single pass of the
pipeline. Therefore, both the Packet Processing (PP) and Feature
Computation (FC) components run at 6.4Tbps line rate on the data
plane (Figure 3). For the ML-based Detector (MD), our KitNET de-
ployment was capable of processing at most around 2-3Mbps on
average. Interestingly, the original Kitsune [11] achieved only half
this detection throughput performance. This shows another benefit
of offloading: with the FC component moved to the switch, we
improve system performance (2×) and leave CPU cycles free for
other tasks.
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