
In-Network ML Feature Computation for Malicious Traffic
Detection

João R. Amado†, Francisco Pereira†, Salvatore Signorello‡, Miguel Correia†, Fernando M. V. Ramos†

† INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, ‡ Telefonica Research

ABSTRACT
We present Peregrine, a malicious traffic detector that offloads
part of its computation to a programmable switch. The idea is to
partition detection, by moving the ML feature computation module
from a middlebox server to a switch data plane. The key innovation
unlocked—computing the ML input features over all traffic—results
in a significant improvement in detection performance: in our eval-
uation, up to 5.7x over the state of the art.

ACM Reference Format:
João R. Amado†, Francisco Pereira†, Salvatore Signorello‡, Miguel Correia†,
Fernando M. V. Ramos†. 2023. In-Network ML Feature Computation for
Malicious Traffic Detection. In ACM SIGCOMM 2023 Conference (ACM SIG-
COMM ’23), September 10, 2023, New York, NY, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3603269.3610866

1 INTRODUCTION
Network operators deploy Network Intrusion Detection Systems
(NIDS) that capture and analyze packet flows to identify malicious
traffic. The ideal NIDS should fulfil four requirements: (R1) observe
and analyze all network traffic at high speed to (R2) detect any
attack, (R3) as it happens, (R4) without generating false positives.

The most common NIDS detect and prevent attacks based on
their (known) signatures [13, 14, 16]. Their limitation is that they
are unable to detect zero-day attacks (R2) [5]. Another class of ma-
licious traffic detectors focus on spotting deviations from regular
traffic profiles, enabling detection of attacks for which there are no
defined signatures (R2). The most promising solutions of this class
leverage machine learning (ML) algorithms to learn traffic profiles
and identify statistical variations [4, 6, 7, 11, 17], achieving im-
pressive performance for zero-day detection (R4). However, these
systems face a performance challenge, due to the processing over-
head of the ML pipeline. As a result, most run offline [2, 3, 10, 12],
precluding real-time detection (R3). Recent middlebox-based de-
tection solutions [4, 11] perform detection online, but their limited
packet processing capabilities does not match the requirements
of today’s Terabit networks. Their practical deployment requires
heavy sampling (R1), seriously compromising detection perfor-
mance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3610866

Figure 1: Peregrine approach vs. SOTA

In this work, we ask: is it possible to perform malicious traffic
detection in Tbps networks without compromising detection perfor-
mance? We present Peregrine, a malicious traffic detector that
responds to this problem with a cross-layer approach that parti-
tions the detector pipeline. In Peregrine, the feature computation
module runs in a network switch, computing features over all traffic
(R1), while the online (R3) ML-based detector (R2, R4) runs in a
middlebox server.

The key challenge of our approach is dual: achieving generality
while complying with the severe computational constraints of a
network switch. On the one hand, our features need to be use-
ful enough for a diverse set of ML-based detection systems. On
the other hand, they need to be computable in a network switch.
We achieve this by computing several dozens of commonly used
features (close to one hundred)—for generality—and by resorting
to stream-like, approximated computations—to fit the switch con-
straints. The key takeaway is that it is better to compute these
approximated features over all traffic (R1) than to compute exact
features over sampled traffic only (as existing systems). In other
words, it is better to perform sampling after computing the ML
features, even if only approximated (Figure 1).

2 SYSTEM DESIGN
Peregrine computes features for every packet traversing the switch.
By moving feature computation to the data plane, we avoid the
packet sampling required by SOTA detection systems in real net-
work environments. Alongside per-packet computations, a feature
digest is periodically “pushed” into an ML inference pipeline in
the control plane. In our design process, we have abstracted the
following main principles.
Cross-layer design. To scale detection to Tbps speeds we split
the ML-based detection task, placing its components into either

1105

https://doi.org/10.1145/3603269.3610866
https://doi.org/10.1145/3603269.3610866
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3610866&domain=pdf&date_stamp=2023-09-01


ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Amado et al.

Figure 2: Peregrine vs Kitsune (SOTA) [11].

a middlebox server or a network switch. Specifically, by offload-
ing ML feature computation processing to the data plane, we are
targeting both high detection performance and deployability in
high-throughput networks.
Per-packet feature computation on a switch.We instrument the
data plane blocks to compute flow features as they process incoming
packets. The stages of a PISA pipeline enable basic per-packet
arithmetic operations and storing counters in stateful memory. By
storing a few selected counters per-flow, we are able to compute a
wide range of statistics and derive a sufficient number of features for
ML inference, incrementally, as each packet traverses the pipeline.
Per-epoch ML inference in a middlebox server. We configure
epoch values to define the sampling granularity at which the per-
packet computed features are sent to the ML inference component.
Our approach, a form of enriched record sampling, thus differs from
traditional packet sampling—which effectively skips most packets—
as the required sampling occurs only after feature computation
(Figure 1).

For generality, Peregrine collects features common to many
SOTA detectors, encompassing different flow keys: [MAC src, IP
src], [IP src], [IP src, IP dst], [5-tuple]. For each packet, we first in-
crement three basic counters for each flow key: number of packets,
number of bytes, squared number of bytes. Afterwards, we use these
counters to compute statistics that broadly characterize the traffic
patterns. Some statistics depend on a single flow direction (e.g.,
mean, standard deviation), while others encompass both inbound
and outbound traffic (e.g., magnitude, radius, approximate covari-
ance). We further observe the packet inter-arrival times for the
monitored flows and apply decay factors (four in our implementa-
tion) to maintain statistics for different “time windows".

The data-plane functionality of Peregrine is not tied to any
specific ML classification pipeline, by design. Rather, the features
computed in the data plane are generic enough to be used as input
to many different learning-based detection systems [1, 4, 11]. We
implemented Peregrine’s data plane components in an Intel Tofino
switch [9]. The classification module used in the Peregrine proto-
type is Kitsune’s KitNET neural network [11].

3 EVALUATION
The goal of this section is to show that Peregrine improves both
system and detection performance by moving the feature compu-
tation component to the network data plane. We evaluate against
Kitsune [11], a state-of-the-art NIDS, using datasets with labelled
attack traces [11, 15].

1Tbps

5Tbps

10Tbps

0

1Mbps

2Mbps

3Mbps

Th
ro

ug
hp

ut

Peregrine PP
Peregrine FC

Peregrine MD
Kitsune

Figure 3: Runtime performance

Figure 2 presents the Root Mean Squared Error (RMSE) of the
Area under the Curve (AUC) score—a global detection performance
metric useful in addressing the "tension" between precision and
recall—for each sampling rate over all attacks (lower results are
better). The sampling rate has a different meaning in the two ap-
proaches (recall Figure 1). In Kitsune, it represents the rate at which
packets entering the switch need to be sampled to fit within the
processing limitations of the system, capable only of a few Gbps
packet processing. In Peregrine, where all packets are processed in
the data plane, sampling refers instead to the rate at which a digest
is sent to the ML inference module, after feature computation. The
obtained RMSE values are significantly smaller with Peregrine,
decreasing up to 5.7x for the considered sampling rates. This demon-
strates the value of sampling only after the feature computation
module, thus computing statistics that consider all traffic.

Peregrine successfully compiles for the Tofino 2 T2NA [8] ar-
chitecture, and the entire computation runs in a single pass of the
pipeline. Therefore, both the Packet Processing (PP) and Feature
Computation (FC) components run at 6.4Tbps line rate on the data
plane (Figure 3). For the ML-based Detector (MD), our KitNET de-
ployment was capable of processing at most around 2-3Mbps on
average. Interestingly, the original Kitsune [11] achieved only half
this detection throughput performance. This shows another benefit
of offloading: with the FC component moved to the switch, we
improve system performance (2×) and leave CPU cycles free for
other tasks.

ACKNOWLEDGEMENTS
This work was supported by the European Union (ACES project,
101093126), by national FCT funds (Myriarch project, 2022.09325.PTDC),
and INESC-ID (via UIDB/50021/2020). João R. Amado is supported
by the FCT scholarship 2020.05965.BD.

REFERENCES
[1] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando MV

Ramos, and André Madeira. Flowlens: Enabling efficient flow classification for
ml-based network security applications. In NDSS, 2021.

[2] Karel Bartos, Michal Sofka, and Vojtech Franc. Optimized invariant representa-
tion of network traffic for detecting unseen malware variants. In 25th USENIX
Security Symposium, 2016.

[3] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. Lifelong
anomaly detection through unlearning. In Proceedings of the 2019 ACM SIGSAC

1106



In-Network ML Feature Computation for Malicious Traffic Detection ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

Conference on Computer and Communications Security, 2019.
[4] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime robust malicious traffic

detection via frequency domain analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 3431–3446, 2021.

[5] Ayyoob Hamza, Hassan Habibi Gharakheili, Theophilus A Benson, and Vijay
Sivaraman. Detecting volumetric attacks on lot devices via sdn-based monitoring
of mud activity. In Proceedings of the 2019 ACM Symposium on SDN Research,
pages 36–48, 2019.

[6] Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Paxson, Stefan
Savage, Geoffrey M. Voelker, and David Wagner. Detecting and characterizing
lateral phishing at scale. In 28th USENIX Security Symposium, 2019.

[7] Austin Hounsel, Jordan Holland, Ben Kaiser, Kevin Borgolte, Nick Feamster,
and Jonathan Mayer. Identifying disinformation websites using infrastructure
features. In 10th USENIX Workshop on Free and Open Communications on the
Internet, 2020.

[8] Intel. P416 Intel® Tofino™ Native Architecture – Public Version. Retrieved 2023-
02-15. URL: https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/
master/PUBLIC_Tofino-Native-Arch.pdf.

[9] Intel. The Intel® Tofino™ series of P4-programmable Ethernet switch ASICs. Re-
trieved 2022-10-20. URL: https://www.intel.com/content/www/us/en/products/
details/network-io/programmable-ethernet-switch/tofino-series.html.

[10] L. Invernizzi, S. Miskovic, Rubén Torres, Christopher Krügel, Sabyasachi Saha,
Giovanni Vigna, Sung-Ju Lee, and M. Mellia. Nazca: Detecting malware distribu-
tion in large-scale networks. In NDSS 2014, 2014.

[11] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an
ensemble of autoencoders for online network intrusion detection. In Network
and Distributed Systems Security Symposium, 2018.

[12] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad.
WebWitness: Investigating, categorizing, andmitigatingmalware download paths.
In 24th USENIX Security Symposium, 2015.

[13] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23-24):2435–2463, 1999.

[14] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In
Proceedings of LISA’99: 13th Systems Administration Conference, volume 99, pages
229–238, 1999.

[15] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. ICISSp,
1:108–116, 2018.

[16] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and Justine
Sherry. Achieving 100gbps intrusion prevention on a single server. In 14th
USENIX Symposium on Operating Systems Design and Implementation, pages
1083–1100, 2020.

[17] Ziyun Zhu and Tudor Dumitraş. Featuresmith: Automatically engineering fea-
tures for malware detection by mining the security literature. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016.

1107

https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/master/PUBLIC_Tofino-Native-Arch.pdf
https://raw.githubusercontent.com/barefootnetworks/Open-Tofino/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html

	Abstract
	1 Introduction
	2 System Design
	3 Evaluation
	References

