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10s-100s ns 
per packet

There is no time for synchronization



Avoiding inter-core coordination is 
paramount to achieving high performance 

in parallel implementations
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Shared-nothing architecture

NIC



Why is parallelization hard?

Let’s use a firewall as 
an example
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How should we 
shard our       ?

Finding the right 
sharding solution
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Balancers
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Limiters
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Which packet fields & key enforce 
the required sharding solution?
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NIC configuration

2
Writing performant 
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3
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sharding solution
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Slow remote 
memory accesses

NUMA awareness

Contention for 
locks

Avoiding locks

False sharing

Cache alignment

Concurrent 
memory accesses

Synchronization

Load imbalance

Load balancing



Why is parallelization hard?

I really want 
to add a dst 
IP counter to 
my firewall…

Repeat the whole 
process

Finding the right 
NIC configuration

2
Writing performant 

parallel code

3
Finding the right 
sharding solution

1



Typical constraints found on NFs makes 
automatic parallelization possible

We propose Maestro, a solution for 
automatic parallelization



Automatic parallelization

Maestro

Push-button parallelization

Favors shared-nothing 
architectures

Provides a highly-optimized 
lock-based alternative

Can also generate parallel 
implementations using hardware 
transactional memory (HTM)



The 3 ideas supporting Maestro

Infer state 
manipulation

Static analysis

Find the RSS 
configuration

Automate code 
generation

SMT solver



Maestro’s pipeline
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Constraints 
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Code 
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p0[w] = p1[x]
∧

p0[y] = p1[z]

nf.c nf.c
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Extracting the NF model
Exhaustive 
Symbolic 
Execution

Constraints 
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RSS Config 
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Code 
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LAN?

forward found?

forward

dropmap_get(inv_flow)

map_contains(inv_flow)map_put(flow, device)

When is it safe to 
concurrently 

access a map?
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Partitioning the map across cores

Key equalityR1

SubsumptionR2

Disjoint DependenciesR3

Incompatible DependenciesR4

Interchangeable ConstraintsR5 For more details check

our paper

Dealing with 
hardware 
limitations
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Partitioning the map across cores

Same
key

Same
stateflow core

p0[flow] = p1[flow]

p0 and p1 are sent to the same core if

map_put(flow, v)Key equalityR1

SubsumptionR2
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map_put(dst_ip, v)
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Finding the RSS configuration
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Finding the RSS configuration
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Finding the RSS configuration

SMT
solver

LAN Key

WAN Key

Exhaustive 
Symbolic 
Execution

Constraints 
Generator

RSS Config 
Finder

Code 
Generator

p0[flow] = p1[flow]     hash(p0) = hash(p1)
⋀

p0[inv_flow] = p1[inv_flow]     hash(p0) = hash(p1)
⋀

p0[flow] = p1[inv_flow]     hash(p0) = hash(p1)
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Code generator

LAN Key WAN Key

LAN Packet Fields WAN Packet Fields

Read-write 
lock-based solution if 

shared-nothing is 
deemed infeasible.

For more details check

our paper
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Evaluation

● How does performance scale with the number of cores

○ Shared nothing vs Lock-based vs HTM

○ Varying traffic patterns

○ Packet size

○ Churn

● How does it fare against other parallel frameworks?

○ Vector Packet Processing (VPP)
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Scalability

Shared-Nothing

Locks

HTM

Linear

Linear

Less scalable

Poor

Unpredictable



Maestro is a push-to-parallelize system that automatically parallelizes 
software NFs.

Conclusion

Web: maestro.inesc-id.pt

Contact: francisco.chamica.pereira@tecnico.ulisboa.pt

Maestro’s shared-nothing NFs scale linearly with cores.

Generates shared-nothing parallel solutions whenever possible, and 
lock-based solutions otherwise.


