Automatic Parallelization of
Software Network Functions

Francisco Pereira, Fernando Ramos, Luis Pedrosa

J

TECNICO
LISBOA

@ inescid

Middleboxes are pervasive in today’s
networks

1
1 1 1
I
YD

e Firewalls DPI LRI
Balancers Limiters

Trading performance for flexibility

lﬁ Lower costs

Iﬁ’ Easier management

lié Faster dev cycles

Fixed-function
closed-source
appliances

Software
middleboxes

Trading performance for flexibility

lﬁ Lower costs
é Easier management

[/_3] Faster dev cycles

gl Lower performance

Fixed-function
closed-source
appliances

Software
middleboxes

Line-rates just keep increasing

1G time

Line-rates just keep increasing

1G 10G time
>
rcpuﬂ rcpu‘

Line-rates just keep increasing

time

> 9,006

Parallelization in a nutshell

ﬁ'll;]l

Shared Ltate

e

o

=

There is no time for synchronization

ﬁ'll;]l

Shared Cta

e

o

=

10s-100s ns
per packet

Avoiding inter-core coordination is
paramount to achieving high performance
In parallel implementations

Shared-nothing architecture

= == £ F

EF
-

Why is parallelization hard?

Let’s use a firewall as
an example

1
1 1 1
11
U

Firewall NF

State

LAN

WAN

Firewall NF

Firewall NF

Firewall NF

tate

Firewall NF

Firewall NF

Firewall NF

Firewall NF

Why is parallelization hard?

Why is parallelization hard?

Finding the right
sharding solution
Balancers
Rate

How should we
shard our - ? NAT Limiters

- _Hlll
> .2, &P

l

[T
Symmetry g

Why is parallelization hard?

Finding the right
NIC configuration

Why is parallelization hard?

Finding the right
NIC configuration

Packet fields Key
| |

Hash

-

Core ID

Why is parallelization hard?

Finding the right
NIC configuration

Packet fields Key
| |

-

Hash

Core ID

Which packet fields & key enforce

the required sharding solution?

Why is parallelization hard?

Writing performant
parallel code

N4

Why is parallelization hard?

Writing performant
parallel code

Concurrent

False sharing Load imbalance

memory accesses

Cache alighment Synchronization Load balancing

Slow remote Contention for

memory accesses locks

NUMA awareness Avoiding locks

Why is parallelization hard?

Finding the right Finding the right Writing performant
sharding solution NIC configuration parallel code

| really want)
to add a dst
IP counter to
my firewall...) process

Repeat the whole

Typical constraints found on NFs makes
automatic parallelization possible

T

We propose Maestro, a solution for
automatic parallelization

Automatic parallelization

Maestro

Push-button parallelization

Favors shared-nothing
architectures

Provides a highly-optimized
lock-based alternative

Can also generate parallel
implementations using hardware
transactional memory (HTM)

The 3 ideas supporting Maestro

Infer state
manipulation

Find the RSS
configuration

Automate code

line

s pipe

Maestro’

< M ©

© O 00

00000 el
xxxxxx
000000
444444
ffffff
XXXXXX
000000
m w0 O 0N
0O dH D d
xxxxxx
000000
444444
888888
XXXXXX
000000
bbbbbb
888888
MOM oMM WM
000000
444444
© © © o
xxxxxx
000000
W w T MmO O
000000
XXXXXX
000000
444444
11111 ISl
XXXXXX
000000
x N
e e
— ~—
= >
_— R
= nO

Code
Generator

RSS Config
Finder

Constraints
Generator

Exhaustive
Symbolic

Execution

0\
nf.c

Extracting the NF model

L X
1 void process_packet(int device, pkt_t
> if (device 0 1
struct Flo
4 src_port t, dst_port
5 s ist_ip
6k
] if (!map_contains(map, flow)) {
9 drop(p);
10 return;
11 }
int (flow)
14 forward(p,
15 } else {

struct Flow f

Exhaustive
Symbolic
Execution

Exhaustive
Symbolic
Execution

[— LAN?
map_put(flow, device) map_contains(inv_flow)
1 1
forward ’Q_ found? Q
map_get(inv_flow) drop
|
forward

Sound and complete
model

Extracting the NF model

Exhaustive
Symbolic
Execution
o (%]
void process_packet(int device, pkt_t ?
if (e == WAN) { |-— LAN?
struct Flow ’lf‘j"‘ : { e map_put(flow, device) contains(inv_flow)
s ist, !
.

(X}

1 t: p map_
ip: p.ip ist_ip: . ipvé_sr
- Exhaustive 7
if (!map_contains(map, flow)) { u
0 r’et‘u"rn*n map_get(inv_flow) drop
2) S I. l
st s s, roms ymbolic forvand
4 forward(p, dst_device);
} else {
struct Flow flow = {
ort: p.tcpudp_src, dst_port: p.tcpudp_dst,
1 ipva_src, ist_ip: p.ipv4_dst
1)
‘

Execution Sound and complete
model

With similar limitations as XeBPF

Extracting the NF model

Exhaustive
Symbolic
Execution

I LAN?
map_put(flow, device) map_contains(inv_flow)
| |
map_get(inv_flow) drop

forward

Extracting the NF model

Exhaustive
Symbolic
Execution

map_put(flow, device)

When is it safe to

concurrently
access a map?

map_contains(inv_flow)

map_get(inv_flow)

Partitioning the map across cores

Partitioning the map across cores

@ Disjoint Dependencies
@ Incompatible Dependencies

@ Interchangeable Constraints

Partitioning the map across cores

Dealing with
> hardware
limitations

Partitioning the map across cores

@ Key equality map_put(flow, v)

Partitioning the map across cores

@ Key equality map_put(flow, v)

Same

key flow

Partitioning the map across cores

@ Key equality map_put(flow, v)

Same Same

key flow state core

p, and p, are sent to the same core if

p,[flow] = p, [flow]

Partitioning the map across cores

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

@ Subsumption

Partitioning the map across cores

@ Subsumption

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

Same Same

{src,dst} dst

Same ¢ Same

dst ¢ {src,dst}

Partitioning the map across cores

map_put({src_ip, dst_ip}, v)

Same
core

map_put(dst_ip, v)

@ Subsumption Same Same
{src,dst} dst

Same ¢ Same Same

dst ¢ {src,dst} core

p, and p, are sent to the same core if:

p,ldst_ip] = p,[dst_ip]

Finding the constraints for the firewall

LAN
map_put(flow, device) —

L Wan
map_contains(inv_flow)

Wan
map_get(inv_flow)

Finding the constraints for the firewall

_Lan P, (LAN) and p, (LAN) are sent to the
map_put(flow, device) same core if

p,[flow] = p, [flow]

@ Key equality

Finding the constraints for the firewall

Constraints
Generator

P, (LAN) and p, (LAN) are sent to the

same core if

Wan p,[flow] = p,[flow]

map_contains(inv_flow)

p, (WAN) and p, (WAN) are sent to the

Wan same core if
map_get(inv_flow) p linv_flow] = p_[inv_flow]

@ Key equality

Finding the constraints for the firewall

Law
map_put(flow, device)

Wan
map_contains(inv_flow)

Wa
map_get(inv_flow) N

@ Key equality

Constraints
Generator

P, (LAN) and p, (LAN) are sent to the
same core if
p,[flow] = p, [flow]

p, (WAN) and p, (WAN) are sent to the
same core if
p,linv_flow] = p_[inv_flow]

p, (LAN) and p, (WAN) are sent to the
same core if
p,[flow] = p.[inv_flow]

Finding the RSS configuration

Finder

Finding the RSS configuration

RSS Config
Finder

m s |- IR Gore 10
Key Packet Fields

N

J

Finding the RSS configuration

RSS Config
Finder

N

Hash —Pm-V Core ID
: /
Key Packet Field
Y,

\

Same

hash

Finding the RSS configuration

RSS Config
Finder

N

Hash —Pm-V Core ID

A /4
Key Packet Field$
J

p,lflow] = p.[flow] ~—

p,linv_flow] = p_[inv_flow] /
p,[flow] = p.[inv_flow]

Finding the RSS configuration

RSS Config
Finder

p,[flow] = p.[flow] — hash(p) = hash(p,)
A
p,linv_flow] = p_[inv_flow] = hash(p) = hash(p,)
A
p,[flow] = p.[inv_flow] —hash(p,) = hash(p,)

Finding the RSS configuration

RSS Config
Finder

p,[flow] = p.[flow] — hash(p) = hash(p,)
A
p,linv_flow] = p_[inv_flow] = hash(p) = hash(p,)
A
p,[flow] = p.[inv_flow] —hash(p,) = hash(p,)

solver

—>1 WAN Key

Code generator

)
—

map_put(flow, device)
|
forward

LAN Key

(%)

map_contains(inv_flow)

)

map_get(inv_flow)
I

forward

| (X]

found?

drop

WAN Key

LAN Packet Fields

WAN Packet Fields

Code

Generator

O(minutes)

1
2 struct Map** flows;
4 #define LAN 0

5 #define WAN 1

6

7 uint8_t RSS_HASH_PORT_0[52] = {

8 0xal, 0x24, 0x00, 0x15, 0x00, 0x14,
9 0xal, 0x24, 0x00, 0x14, Oxal, 0x24,
10 0xa7, 0xfa, 0x11l, 0x22, 0x6f, 0xd3,
1 0xlb, 0x6c, Oxeb, 0x14, 0x62, 0x02,
2 0x24, 0x90, 0xf8, Oxlc, 0x43, 0x99,
3 0x80, 0x73, 0x15, Oxfe, 0x29, 0x5a,
0x55, 0x85, 0xf2, 0xc4

20 int init() {

21 unsigned core_id = rte_lcore_id();

22 it 1 == rte_get_main_lcore()) {

23] rs

24 PORT_0, IP_TCP | IP_UDP);
25

26 RSS_HASH_PORT_1, IP_TCP | IP_UDP)
27}

32 void process(int port, pkt_t pkt) {
33 unsigned core_id = rte_lcore_id()
34

35

36 }

H

Oxal,
0x00,
0xfo,
0xa3,
Oxe7,
0x73,

0x24,
0x15,
0x42,
0x44,
oxaf,
0xdo,

H

Code generator

Code
Generator

(V] ' (X .
@ Read-write
map_put(flow, device) map_contains(inv_flow) | oC k- ba sed SO I uti on if
I [. .
p— 9 n 9 _ shared-nothing is

[CILILTES I jeemed infeasible.
map_get(inv_flow) drop —
|
forward
LAN Key WAN Key

LAN Packet Fields WAN Packet Fields

Evaluation

e How does performance scale with the number of cores
o Shared nothing vs Lock-based vs HTM
o Varying traffic patterns
o Packet size

o Churn

e How does it fare against other parallel frameworks?
o Vector Packet Processing (VPP)

Evaluation

e How does performance scale with the number of cores
o Shared nothing vs Lock-based vs HTM

Scalability

Throughput (Millions of packets/second)

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

Shared-nothing

Lock-based

3 4 5

6

7 8 9 10
Number of cores

11

12

13

14

15

16

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

Scalability

Shared-Nothing

Throughput (Millions of packets/second)

80
60
40
20

= Shared-nothing Lock-based

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

Scalability

Shared-Nothing

No

shared-nothing
solution

= Shared-nothing

Lock-based

NOP

Bridge

Throughput (Millions of pack®

L b b L e——

p—

1 2 3 4 5

6

7 8 9 10 11
Number of cores

12 13 14 15 16

DBridge

PSD CL NAT FW Policgr

LB

Scalability

Shared-Nothing

Bottlenecked

by the PCle

= Shared-nothing Lock-based

80
60
40
20

DBridge SBridge

Throughput jMillions of phckets/secorfd)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

NOP

PSD CL NAT FW Policer

LB

Scalability

Shared-Nothing

Throughput (Millions of packets/second)

80
60
40
20

= Shared-nothing Lock-based

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

Scalability

Shared-Nothing

Throughput (Millions of packets/second)

80
60
40
20

= Shared-nothing Lock-based

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

= Shared-nothing Lock-based M

NOP

Scalability :

DBridge SBridge

Shared-Nothing %

Il Il Il Il
Policer

of packets/second)

FW

Throughput (Millio
[¢2]
o
NAT

Lo v by v b by
PSD CL

B e,
S o
T T T T [T T T T [T T T T [T T T

Every packet ;‘8
writes to c0
state

LB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Scalability

Shared-Nothing

An alternative to

shared-nothing

Throughput (Millions of packet

= Shared-nothing

Lock-based

PSD

1 2 3 4 5

6

7 8 9 10 11
Number of cores

12 13 14 15 16

DBridge SBridge NOP

NAT FW Policer

CL

LB

Scalability

Shared-Nothing

Less scalable

Linear

Throughput (Millions of packets/second)

= Shared-nothing

Lock-based

80
60
40
20

80
60
40
20

DBridge SBridge

80
60
40
20

80
60
40
20

80
60
40
20

PSD

1 2 3 4 5

6

7 8 9 10
Number of cores

11

12

13 14 15

16

NOP

NAT FW Policer

CL

LB

Scalability

Shared-Nothing

Less scalable

Linear

Throughput (Millions of packets/second)

= Shared-nothing Lock-based — M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

= Shared-nothing Lock-based — M

1 NIOIP 1

Scalability

Shared-Nothing

Policer DBridge SBridge

kets/secOng

Linear

FW

Less scalable

NAT

Throughput (Millions oTeg

cL

PSD

Best-case is 20|
comparable to 28
IOCKS 0 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of cores

LB

Scalability

Shared-Nothing

Less scalable

Linear

Otherwise is
unpredictable or

= Shared-nothing Lock-based — M

1 NIOIP 1

Thryghput (Milldgs of packets/second)

worse than locks

% ambnll

Policer DBridge SBridge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

PSD CL NAT FW

LB

Scalability

Shared-Nothing

Linear

Less scalable

Unpredictable

Throughput (Millions of packets/second)

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

80
60
40
20

= Shared-nothing Lock-based — M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

DBridge SBridge NOP

PSD CL NAT FW Policer

LB

Conclusion \\

Maestro is a push-to-parallelize system that automatically parallelizes
software NFs.

Generates shared-nothing parallel solutions whenever possible, and
lock-based solutions otherwise.

Maestro’s shared-nothing NFs scale linearly with cores.

IEI -q.ﬂﬂr m]

