Automatic Parallelization of
Software Network Functions

Francisco Pereira, Fernando Ramos, Luis Pedrosa

J

TECNICO
LISBOA

@ inescid




Middleboxes are pervasive in today’s
networks
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Trading performance for flexibility
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Line-rates just keep increasing
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Parallelization in a nutshell
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There is no time for synchronization
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Avoiding inter-core coordination is
paramount to achieving high performance
In parallel implementations



Shared-nothing architecture
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Why is parallelization hard?

Let’s use a firewall as
an example
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Why is parallelization hard?



Why is parallelization hard?

Finding the right
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Why is parallelization hard?

Finding the right
NIC configuration

Packet fields Key
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Core ID

Which packet fields & key enforce

the required sharding solution?




Why is parallelization hard?

Writing performant
parallel code
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Why is parallelization hard?

Writing performant
parallel code

Concurrent

False sharing Load imbalance

memory accesses

Cache alighment Synchronization Load balancing

Slow remote Contention for

memory accesses locks

NUMA awareness Avoiding locks




Why is parallelization hard?

Finding the right Finding the right Writing performant
sharding solution NIC configuration parallel code

| really want )
to add a dst
IP counter to
my firewall... ) process

Repeat the whole




Typical constraints found on NFs makes
automatic parallelization possible

T

We propose Maestro, a solution for
automatic parallelization




Automatic parallelization

Maestro

Push-button parallelization

Favors shared-nothing
architectures

Provides a highly-optimized
lock-based alternative

Can also generate parallel
implementations using hardware
transactional memory (HTM)



The 3 ideas supporting Maestro

Infer state
manipulation

Find the RSS
configuration

Automate code
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Extracting the NF model

L X
1 void process_packet(int device, pkt_t
> if (device 0 1
struct Flo
4 src_port t, dst_port
5 s ist_ip
6k
] if (!map_contains(map, flow)) {
9 drop(p);
10 return;
11 }
int ( flow)
14 forward(p,
15 } else {

struct Flow f

Exhaustive
Symbolic
Execution
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[— LAN?
map_put(flow, device) map_contains(inv_flow)
1 1
forward ’Q_ found? Q
map_get(inv_flow) drop
|
forward

Sound and complete
model




Extracting the NF model

Exhaustive
Symbolic
Execution
o (%]
void process_packet(int device, pkt_t ?
if ( e == WAN) { |-— LAN?
struct Flow ’lf‘j"‘ : { e map_put(flow, device) contains(inv_flow)
s ist, !
.

(X}

1 t: p map_
ip: p.ip ist_ip: . ipvé_sr
- Exhaustive 7
if (!map_contains(map, flow)) { u
0 r’et‘u"rn*n map_get(inv_flow) drop
2 ) S I. l
st s s, roms ymbolic forvand
4 forward(p, dst_device);
} else {
struct Flow flow = {
ort: p.tcpudp_src, dst_port: p.tcpudp_dst,
1 ipva_src, ist_ip:  p.ipv4_dst
1 )
‘

Execution Sound and complete
model

With similar limitations as XeBPF




Extracting the NF model

Exhaustive
Symbolic
Execution

I LAN?
map_put(flow, device) map_contains(inv_flow)
| |
map_get(inv_flow) drop

forward



Extracting the NF model

Exhaustive
Symbolic
Execution

map_put(flow, device)

When is it safe to

concurrently
access a map?

map_contains(inv_flow)

map_get(inv_flow)



Partitioning the map across cores



Partitioning the map across cores

@ Disjoint Dependencies
@ Incompatible Dependencies

@ Interchangeable Constraints



Partitioning the map across cores

Dealing with
> hardware
limitations




Partitioning the map across cores

@ Key equality map_put(flow, v)




Partitioning the map across cores

@ Key equality map_put(flow, v)
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Partitioning the map across cores

@ Key equality map_put(flow, v)

Same Same

key flow state core

p, and p, are sent to the same core if

p,[flow] = p, [flow]



Partitioning the map across cores

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

@ Subsumption



Partitioning the map across cores

@ Subsumption

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

Same Same

{src,dst} dst

Same ¢ Same

dst ¢ {src,dst}



Partitioning the map across cores

map_put({src_ip, dst_ip}, v)

Same
core

map_put(dst_ip, v)

@ Subsumption Same Same
{src,dst} dst

Same ¢ Same Same

dst ¢ {src,dst} core

p, and p, are sent to the same core if:

p,ldst_ip] = p,[dst_ip]




Finding the constraints for the firewall

LAN
map_put(flow, device) —

L Wan
map_contains(inv_flow)

Wan
map_get(inv_flow)



Finding the constraints for the firewall

_Lan P, (LAN) and p, (LAN) are sent to the
map_put(flow, device) same core if

p,[flow] = p, [flow]

@ Key equality



Finding the constraints for the firewall

Constraints
Generator

P, (LAN) and p, (LAN) are sent to the

same core if

Wan p,[flow] = p,[flow]

map_contains(inv_flow)

p, (WAN) and p, (WAN) are sent to the

Wan same core if
map_get(inv_flow) p linv_flow] = p_[inv_flow]

@ Key equality



Finding the constraints for the firewall

Law
map_put(flow, device)

Wan
map_contains(inv_flow)

Wa
map_get(inv_flow) N

@ Key equality

Constraints
Generator

P, (LAN) and p, (LAN) are sent to the
same core if
p,[flow] = p, [flow]

p, (WAN) and p, (WAN) are sent to the
same core if
p,linv_flow] = p_[inv_flow]

p, (LAN) and p, (WAN) are sent to the
same core if
p,[flow] = p.[inv_flow]



Finding the RSS configuration

Finder




Finding the RSS configuration

RSS Config
Finder

m s |- IR Gore 10
Key Packet Fields

N

J




Finding the RSS configuration

RSS Config
Finder
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Finding the RSS configuration

RSS Config
Finder
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Hash —Pm-V Core ID
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p,linv_flow] = p_[inv_flow] /
p,[flow] = p.[inv_flow]




Finding the RSS configuration

RSS Config
Finder

p,[flow] = p.[flow] — hash(p ) = hash(p,)
A
p,linv_flow] = p_[inv_flow] = hash(p ) = hash(p,)
A
p,[flow] = p.[inv_flow] —hash(p,) = hash(p,)




Finding the RSS configuration

RSS Config
Finder

p,[flow] = p.[flow] — hash(p ) = hash(p,)
A
p,linv_flow] = p_[inv_flow] = hash(p ) = hash(p,)
A
p,[flow] = p.[inv_flow] —hash(p,) = hash(p,)
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Code generator
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map_put(flow, device)
|
forward

LAN Key
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map_contains(inv_flow)
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map_get(inv_flow)
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forward
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found?

drop

WAN Key

LAN Packet Fields

WAN Packet Fields

Code

Generator
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1
2 struct Map** flows;
4 #define LAN 0

5 #define WAN 1

6

7 uint8_t RSS_HASH_PORT_0[52] = {

8 0xal, 0x24, 0x00, 0x15, 0x00, 0x14,
9 0xal, 0x24, 0x00, 0x14, Oxal, 0x24,
10 0xa7, 0xfa, 0x11l, 0x22, 0x6f, 0xd3,
1 0xlb, 0x6c, Oxeb, 0x14, 0x62, 0x02,
2 0x24, 0x90, 0xf8, Oxlc, 0x43, 0x99,
3 0x80, 0x73, 0x15, Oxfe, 0x29, 0x5a,
0x55, 0x85, 0xf2, 0xc4

20 int init() {

21  unsigned core_id = rte_lcore_id();

22 it 1 == rte_get_main_lcore()) {

23] rs

24 PORT_0, IP_TCP | IP_UDP);
25

26 RSS_HASH_PORT_1, IP_TCP | IP_UDP)
27}

32 void process(int port, pkt_t pkt) {
33 unsigned core_id = rte_lcore_id()
34

35

36 }

H

Oxal,
0x00,
0xfo,
0xa3,
Oxe7,
0x73,

0x24,
0x15,
0x42,
0x44,
oxaf,
0xdo,

H



Code generator

Code
Generator
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Evaluation

e How does performance scale with the number of cores
o Shared nothing vs Lock-based vs HTM
o Varying traffic patterns
o Packet size

o Churn

e How does it fare against other parallel frameworks?
o Vector Packet Processing (VPP)
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Scalability
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Scalability

Shared-Nothing
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= Shared-nothing Lock-based M

NOP

Scalability :

DBridge SBridge

Shared-Nothing %

Il Il Il Il
Policer

of packets/second)

FW

Throughput (Millio
[¢2]
o
NAT

Lo v by v b by
PSD CL

B e,
S o
T T T T [ T T T T [ T T T T [ T T T

Every packet ;‘8
writes to c0
state

LB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores



Scalability

Shared-Nothing

An alternative to

shared-nothing
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Scalability

Shared-Nothing

Less scalable

Linear
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= Shared-nothing Lock-based — M
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Scalability

Shared-Nothing

Linear
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Conclusion \\

Maestro is a push-to-parallelize system that automatically parallelizes
software NFs.

Generates shared-nothing parallel solutions whenever possible, and
lock-based solutions otherwise.

Maestro’s shared-nothing NFs scale linearly with cores.
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