
Automatic Parallelization of
Software Network Functions

Francisco Pereira, Fernando Ramos, Luis Pedrosa

Middleboxes are pervasive in today’s
networks

Load
Balancers

Firewalls DPI Rate
Limiters

Trading performance for flexibility

Fixed-function
closed-source

appliances

Software
middleboxes

Lower costs

Easier management

Faster dev cycles

Trading performance for flexibility

Fixed-function
closed-source

appliances

Software
middleboxes

Lower costs

Easier management

Faster dev cycles

Lower performance

Line-rates just keep increasing

1G time

Line-rates just keep increasing

10G1G time

800G

Line-rates just keep increasing

10G 100G1G time

NFNF NF NFNF

NIC

Shared State

Parallelization in a nutshell

NFNF NF NFNF

NIC

Shared State

10s-100s ns
per packet

There is no time for synchronization

Avoiding inter-core coordination is
paramount to achieving high performance

in parallel implementations

NFNF NF NFNF

Shared-nothing architecture

NIC

Why is parallelization hard?

Let’s use a firewall as
an example

Firewall NF

NIC

LAN WAN

State

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

State

Firewall NF

NIC

LAN WAN

Remember

Why is parallelization hard?

Why is parallelization hard?

How should we
shard our ?

Finding the right
sharding solution

1

Symmetry

Load
Balancers

NAT
Rate

Limiters

Why is parallelization hard?

Finding the right
NIC configuration

2
Finding the right
sharding solution

1

Why is parallelization hard?

RSSNIC

Key

HASH
FUNCTION Hash LUT Core ID

Packet fields

Finding the right
NIC configuration

2
Finding the right
sharding solution

1

Why is parallelization hard?

RSSNIC

Key

HASH
FUNCTION Hash LUT Core ID

Packet fields

Finding the right
NIC configuration

2
Finding the right
sharding solution

1

Which packet fields & key enforce
the required sharding solution?

Why is parallelization hard?

Finding the right
NIC configuration

2
Writing performant

parallel code

3
Finding the right
sharding solution

1

Why is parallelization hard?

Finding the right
NIC configuration

2
Writing performant

parallel code

3
Finding the right
sharding solution

1

Slow remote
memory accesses

NUMA awareness

Contention for
locks

Avoiding locks

False sharing

Cache alignment

Concurrent
memory accesses

Synchronization

Load imbalance

Load balancing

Why is parallelization hard?

I really want
to add a dst
IP counter to
my firewall…

Repeat the whole
process

Finding the right
NIC configuration

2
Writing performant

parallel code

3
Finding the right
sharding solution

1

Typical constraints found on NFs makes
automatic parallelization possible

We propose Maestro, a solution for
automatic parallelization

Automatic parallelization

Maestro

Push-button parallelization

Favors shared-nothing
architectures

Provides a highly-optimized
lock-based alternative

Can also generate parallel
implementations using hardware
transactional memory (HTM)

The 3 ideas supporting Maestro

Infer state
manipulation

Static analysis

Find the RSS
configuration

Automate code
generation

SMT solver

Maestro’s pipeline

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

p0[w] = p1[x]
∧

p0[y] = p1[z]

nf.c nf.c

Sound and complete
model

Extracting the NF model
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Exhaustive
Symbolic
Execution

Sound and complete
model

Extracting the NF model
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Exhaustive
Symbolic
Execution

With similar limitations as

Extracting the NF model
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

map_put(flow, device)

LAN?

forward

map_contains(inv_flow)

found?

forward

dropmap_get(inv_flow)

Extracting the NF model
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

LAN?

forward found?

forward

dropmap_get(inv_flow)

map_contains(inv_flow)map_put(flow, device)

When is it safe to
concurrently

access a map?

Partitioning the map across cores

Partitioning the map across cores

Key equalityR1

SubsumptionR2

Disjoint DependenciesR3

Incompatible DependenciesR4

Interchangeable ConstraintsR5

Partitioning the map across cores

Key equalityR1

SubsumptionR2

Disjoint DependenciesR3

Incompatible DependenciesR4

Interchangeable ConstraintsR5 For more details check

our paper

Dealing with
hardware
limitations

Partitioning the map across cores

Same
key

Same
state

Key equalityR1

SubsumptionR2

map_put(flow, v)

Partitioning the map across cores

Same
key

Same
stateflow core

map_put(flow, v)Key equalityR1

SubsumptionR2

Partitioning the map across cores

Same
key

Same
stateflow core

p0[flow] = p1[flow]

p0 and p1 are sent to the same core if

map_put(flow, v)Key equalityR1

SubsumptionR2

Key equalityR1

SubsumptionR2

Partitioning the map across cores

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

Key equalityR1

SubsumptionR2

Partitioning the map across cores

Same
dst

Same
{src,dst}

Same
core

Same
{src,dst}

Same
dst

Same
core

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

Key equalityR1

SubsumptionR2

Partitioning the map across cores

Same
dst

Same
{src,dst}

Same
core

Same
{src,dst}

Same
dst

Same
core

map_put({src_ip, dst_ip}, v)

map_put(dst_ip, v)

p0[dst_ip] = p1[dst_ip]

p0 and p1 are sent to the same core if:

Finding the constraints for the firewall

map_put(flow, device)

map_contains(inv_flow)

map_get(inv_flow)

WAN

LAN

WAN

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the constraints for the firewall

map_put(flow, device)

map_contains(inv_flow)

map_get(inv_flow)

WAN

LAN

WAN

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Key equalityR1

p0 (LAN) and p1 (LAN) are sent to the
same core if

p0[flow] = p1[flow]

Finding the constraints for the firewall

map_put(flow, device)

map_contains(inv_flow)

map_get(inv_flow)

WAN

LAN

WAN

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Key equalityR1

p0 (LAN) and p1 (LAN) are sent to the
same core if

p0[flow] = p1[flow]

p0 (WAN) and p1 (WAN) are sent to the
same core if

p0[inv_flow] = p1[inv_flow]

Finding the constraints for the firewall

map_put(flow, device)

map_contains(inv_flow)

map_get(inv_flow)

WAN

LAN

WAN

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Key equalityR1

p0 (LAN) and p1 (LAN) are sent to the
same core if

p0[flow] = p1[flow]

p0 (WAN) and p1 (WAN) are sent to the
same core if

p0[inv_flow] = p1[inv_flow]

p0[flow] = p1[inv_flow]

p0 (LAN) and p1 (WAN) are sent to the
same core if

Finding the RSS configuration
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the RSS configuration

RSSNIC
HASH

FUNCTION Hash LUT Core ID

Packet FieldsKey

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the RSS configuration

RSSNIC

Same
hash

Same
core

HASH
FUNCTION Hash LUT Core ID

Packet FieldsKey

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the RSS configuration

RSSNIC

Same
hash

Same
core

HASH
FUNCTION Hash LUT Core ID

Packet FieldsKey

p0[flow] = p1[inv_flow]

p0[flow] = p1[flow]

p0[inv_flow] = p1[inv_flow]

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the RSS configuration

p0[flow] = p1[flow] hash(p0) = hash(p1)
⋀

p0[inv_flow] = p1[inv_flow] hash(p0) = hash(p1)
⋀

p0[flow] = p1[inv_flow] hash(p0) = hash(p1)

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

Finding the RSS configuration

SMT
solver

LAN Key

WAN Key

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

p0[flow] = p1[flow] hash(p0) = hash(p1)
⋀

p0[inv_flow] = p1[inv_flow] hash(p0) = hash(p1)
⋀

p0[flow] = p1[inv_flow] hash(p0) = hash(p1)

Code generator
Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

LAN Key WAN Key

LAN Packet Fields WAN Packet Fields

O(minutes)

Code generator

LAN Key WAN Key

LAN Packet Fields WAN Packet Fields

Read-write
lock-based solution if

shared-nothing is
deemed infeasible.

For more details check

our paper

Exhaustive
Symbolic
Execution

Constraints
Generator

RSS Config
Finder

Code
Generator

O(minutes)

Evaluation

● How does performance scale with the number of cores

○ Shared nothing vs Lock-based vs HTM

○ Varying traffic patterns

○ Packet size

○ Churn

● How does it fare against other parallel frameworks?

○ Vector Packet Processing (VPP)

Evaluation

● How does performance scale with the number of cores

○ Shared nothing vs Lock-based vs HTM

○ Varying traffic patterns

○ Packet size

○ Churn

● How does it fare against other parallel frameworks?

○ Vector Packet Processing (VPP)

For more details check

our paper

Shared-Nothing

Locks

HTM

Scalability

Locks

HTM

Scalability

Shared-Nothing

Locks

HTM

Scalability

No
shared-nothing

solution

Shared-Nothing

Locks

HTM

Shared-Nothing

Scalability

Bottlenecked
by the PCIe

Locks

HTM

Shared-Nothing

Scalability
Linear

Locks

HTM

Scalability

Shared-Nothing
Linear

Locks

HTM

Scalability

Every packet
writes to

state

Shared-Nothing
Linear

Locks

HTM

Scalability

An alternative to
shared-nothing

Shared-Nothing
Linear

Locks

HTM

Scalability

Shared-Nothing

Linear

Less scalable

Linear

Locks

HTM

Scalability

Shared-Nothing

Linear

Less scalable

Linear

Locks

HTM

Scalability

Shared-Nothing

Best-case is
comparable to

locks

Linear

Less scalable

Linear

Locks

HTM

Scalability

Shared-Nothing

Otherwise is
unpredictable or
worse than locks

Linear

Less scalable

Linear

Scalability

Shared-Nothing

Locks

HTM

Linear

Linear

Less scalable

Poor

Unpredictable

Maestro is a push-to-parallelize system that automatically parallelizes
software NFs.

Conclusion

Web: maestro.inesc-id.pt

Contact: francisco.chamica.pereira@tecnico.ulisboa.pt

Maestro’s shared-nothing NFs scale linearly with cores.

Generates shared-nothing parallel solutions whenever possible, and
lock-based solutions otherwise.

