Automatic Parallelization of Software Network Functions

Francisco Pereira @ Fernando M. V. Ramos % Luis Pedrosa @
U INESC-ID, Instituto Superior Técnico, University of Lisbon

Abstract

Software network functions (NFs) trade-off flexibility and
ease of deployment for an increased challenge of performance.
The traditional way to increase NF performance is by distribut-
ing traffic to multiple CPU cores, but this poses a significant
challenge: how to parallelize an NF without breaking its se-
mantics? We propose Maestro, a tool that analyzes a sequen-
tial implementation of an NF and automatically generates an
enhanced parallel version that carefully configures the NIC’s
Receive Side Scaling mechanism to distribute traffic across
cores, while preserving semantics. When possible, Maestro
orchestrates a shared-nothing architecture, with each core op-
erating independently without shared memory coordination,
maximizing performance. Otherwise, Maestro choreographs a
fine-grained read-write locking mechanism that optimizes op-
eration for typical Internet traffic. We parallelized 8 software
NFs and show that they generally scale-up linearly until bot-
tlenecked by PCle when using small packets or by 100 Gbps
line-rate with typical Internet traffic. Maestro further outper-
forms modern hardware-based transactional memory mecha-
nisms, even for challenging parallel-unfriendly workloads.

1 Introduction

With the transition of Network Functions (or NFs) from cus-
tom, fixed-function devices to software running on commod-
ity hardware came a well known performance challenge. As
line-rates kept increasing, the networking community kept
proposing new tools, techniques, and architectural enhance-
ments to overcome individual bottlenecks. User-mode frame-
works, like DPDK [38], bypass the kernel, avoiding costly
context switches; DDIO [41] places incoming packets directly
in the CPU cache as they arrive; and NICs implement Re-
ceive Side Scaling (RSS) [72] to consistently distribute traffic
across multiple CPU cores using a configurable hash-function.
Despite this wealth of tools, the challenge of developing per-
formant software at these time scales is considerable, typically
requiring parallelization [30] and, with it, a deep knowledge
of low-level architectural details such as cache-friendly al-
location, cache-coherence-aware coordination, and a deep
understanding of the RSS hashing mechanism.

Although parallelization is paramount to achieving high
performance, ensuring equivalence between parallel and se-
quential implementations is hard [22,35,50,63,67]. Thus, we
argue that developers need not shoulder the burden of fine-
grained parallelization themselves. Much like how developers
typically do not write entire code-bases in assembly language,
allowing a compiler to analyze their code, extract its function-

ality, and build an assembly implementation that is equivalent
in semantics, we argue that the fine-scaled parallelization of
NFs should follow a similar approach. Developers should
implement sequential versions of their NFs, benefiting from
the inherent simplicity of testing, debugging, and updating
such systems, and when deploying to production they can
“compile” the NF to obtain its parallelized version.

There are two key insights supporting the solution for this
challenge. Due to the increasingly pervasive use of NF frame-
works amenable to symbolic execution [1,3,10,13,17,37,45,
52,68,76], the first key insight is that this technique can be
used to not only analyze the NF and infer how it maintains
state, but also automatically generate modified versions of it.
The second key insight is that by knowing how the NF main-
tains its state, we can configure the RSS mechanism to send
packets accessing the same state to the same core, aiming to
minimize inter-core coordination in a parallel implementation,
thus maximizing performance.

With these key insights in mind, we propose Maestro, a
tool that automatically analyzes a software NF and generates
a new implementation that distributes the workload across
multiple cores while preserving the semantics of the sequen-
tial implementation. This analysis builds a comprehensive
symbolic model of how the NF stores and accesses state, and
how that state is structured around flows. Flows (also called
Sflowspace [50] and scope [22] by prior work) describe related
packets—identified through packet header fields—that the NF
logically tracks as an isolated unit. A firewall, for example,
often tracks TCP/UDP flows, identified by the packet 5-tuple
(source and destination IPs and ports and the IP protocol
number), whereas a traffic monitor may identify flows by des-
tination IP alone. As NFs typically store state on a per-flow
basis [50, 69], Maestro learns how flows are defined in the NF
by extracting the constraints that define how packets access
state. We then use a solver to find an RSS configuration that
distributes traffic across multiple CPU cores, in such a way
as to minimize costly inter-core coordination. Our tool then
automatically generates a new implementation of the NF that
parallelizes its operation accordingly.

When possible, Maestro generates an implementation
based on a shared-nothing architecture, wherein RSS is con-
figured to forward packets of the same flow to the same
CPU core, completely eliminating any inter-core coordina-
tion. When the NF is not compatible with such a model,
Maestro can still generate a parallel implementation where
cores share state but accesses to that state are coordinated by
a read-write locking mechanism that, while not as performant

as a shared-nothing architecture, can still perform well under
typical (Zipfian) Internet traffic.

Maestro draws inspiration from prior work in NF analy-
sis [50] and verification [76, 77], as well as the wisdom of
a wide body of research on NF performance [25, 30,45, 60].
We also use the lessons learned by many before us that ad-
dress the challenges of manually parallelizing NFs, including
NUMA considerations [29], configuring RSS for symmetric
flow handling [74], and rebalancing load with skew [8].

Maestro handles DPDK NFs which store state using the
Vigor API [76]. For these NFs to be amenable to ESE, they
are implemented under some constraints, which we describe
in §5. These limitations, however, pertain only to NFs given as
input to Maestro, and not to the generated parallel solutions.

We evaluate the performance of Maestro by parallelizing
8 DPDK NFs. Our experimental evaluation shows that NFs
that can be parallelized using the shared-nothing architecture
scale linearly with the number of cores used until bottlenecked
by PCle when using small packets or by 100 Gbps line-rate
with typical Internet traffic [12]. The remaining NFs that re-
quire read-write locks to maintain their semantics vary their
performance with the workload. High-churn traffic—where
most packets establish a new flow—requires more writing to
shared state, degrading performance. Fortunately, the majority
of packets in typical Internet traffic belong to a minority of
flows [12], requiring less state writing and allowing more con-
currency. Under this read-heavy traffic, Maestro’s lock-based
parallel NFs perform comparably to a shared-nothing model.
Notably, when Maestro had to resort to locking, equivalent ver-
sions of the NFs that use hardware transactional memory [54]
(TM) to preserve semantics (via the Restricted Transactional
Memory interface [42]) were unable to outperform our op-
timized locks, as we show in §6.4. We also show that NFs
automatically parallelized by Maestro rival in performance
with ones manually parallelized using VPP [7].

In §2, we describe the inherent challenge of parallelizing
NFs, to better motivate our work. We subsequently present
the main contributions of our work, describing the Maestro
architecture in §3 and several key optimizations in §4. In §5
we discuss Maestro’s inherent limitations. In §6, we evaluate
Maestro and the performance of the parallel NFs it generates.
Finally, we describe related work in §7 and conclude with
final thoughts in §8.

2 Why Parallelization is Hard

Ideally, one would parallelize an NF by spinning up individual
instances per core, each running independently, and using the
NIC to evenly distributing traffic among them. NFs, however,
typically store state that persists across packets. Sharing this
state among cores requires coordinating access to it, but mini-
mizing this coordination is crucial to achieving high perfor-
mance. Parallel implementations that require no state sharing
among their instances (and therefore no synchronization) are
called shared-nothing. Implementing a shared-nothing imple-

mentation of a stateful NF requires carefully configuring the
NIC to distribute traffic to each core in a way that aligns with
how state is structured in the NF. With such a mechanism,
state is sharded across cores and packets accessing the same
state always find themselves on the same core.

The NIC can perform this traffic distribution in hardware
using the Receive-Side Scaling (RSS) mechanism [72]. This
mechanism hashes packet headers using a user-defined set
of fields and a hash key. The computed hash is subsequently
used to direct traffic to different queues which can deliver the
packets to different cores. To send, for example, packets of the
same TCP flow to the same core, one would configure RSS to
hash the source and destination IP addresses, and TCP/UDP
ports, and the IP protocol number (i.e. the 5-tuple), ensuring
that any two packets with the same 5-tuple will have the same
hash and will end up on the same core.

This leads us to the traditional method for building parallel
shared-nothing NFs: first, developers shard state in the NF,
building a full understanding of how state is accessed under
all circumstances. They then use this sharding solution to con-
struct an RSS configuration that distributes traffic accordingly.
This approach, however, poses three big challenges:

1. Finding the right sharding solutions is hard. Though
some NFs simply shard on the 5-tuple, many others require a
more careful approach. One common use case involves sym-
metrical access to state based on the 5-tuple so that incoming
traffic—that has the source and destination swapped—access
the same state as outgoing traffic [74]. Other NFs require a
more coarse-grained partitioning: some policers and traffic
monitors only use the destination addresses to index state,
connection limiters may only use source addresses, and net-
work address translators (NATs) will typically shard on the
WAN’s server address and port (as all the other addresses
and ports are translated). Simply sharding on the 5-tuple here
would require expensive coordination (e.g. locks), as cores
are unable to act independently.

Arriving at sharding solutions is harder than generically us-
ing locks each time state is accessed. The developer needs in-
tricate knowledge of the NF’s semantics and internals, partic-
ularly around how state is kept and manipulated. This thought
process must not only take place upon initial implementation,
but also as the NF code evolves over time. Augmenting a fire-
wall with a connection limiter feature renders the previously
configured 5-tuple sharding obsolete, requiring a complete
rethink of how it should be sharded.

2. Finding the right RSS configuration is hard. Even if
we take the sharding solution for granted, configuring RSS
accordingly is difficult. For trivial cases, this is just a matter of
selecting the right fields to hash but more complex scenarios
can require carefully crafting the RSS key. Such an approach
was used in [74] to handle symmetrical TCP/UDP flows, but
manually tracking the sharding constraints and finding inter-
nal symmetries in the hash key that pair with those constraints
quickly becomes unmanageable. For NFs with other sharding

Constraints JEZNAZ
Generator

/ NF model Constraints

Parallel NF.c

Code
Generator

RSS config

Figure 1: Maestro’s architecture

requirements, the problem becomes even harder. Not all sets
of fields are supported by NICs [39,40], requiring a specific
RSS key that cancels out some bits to circumvents this limi-
tation. One might even require symmetry between different
interfaces (when incoming and outgoing traffic use different
NICs), which requires a separate but interrelated configura-
tion and key for each NIC. More complex NFs can shard
state in ways that do not neatly fit into any common case,
requiring a custom formulation which, as before, may need to
be completely rethought from scratch should the NF change
over time. Some cases are outright infeasible, due to inherent
NIC limitations, at which point a well-placed warning could
help guide developers towards better solutions.

3. Writing performant parallel code is hard. Even if a
developer correctly shards the NF and properly configures
RSS to achieve a valid shared-nothing solution, they can still
be leaving performance on the table. Though shared-nothing
goes a long way towards ensuring good performance, many
more minute details play a further role in parallel code. Packet
buffers and state must now be cache-aligned to avoid false
cache-line sharing. Memory allocation must be NUMA-aware
to avoid slower remote accesses across the QPI bus. Even ex-
ogenous factors like traffic skew must now be considered [§]
to fully realize the potential of a parallel implementation.

Getting any of these issues wrong can stand in the way of
performance, correctness, or both, but are ultimately amenable
to automation. Our tool—Maestro—tackles the first challenge
by analyzing how the NF keeps its state and finding the con-
straints that packets that need to be sent to the same core must
satisfy. It further tackles the second challenge by formulating
an SMT problem and using a solver to find the right RSS
keys that satisfy the sharding requirements. Finally, Maestro
addresses the third challenge by automatically generating a
parallel implementation that is semantically equivalent to its
sequential counterpart. The generated code fully handles NIC
initialization and RSS configuration, cache-alignment, load-
balancing, and NUMA considerations. Even when a shared-
nothing approach is not possible, Maestro can still help by
generating an optimized lock-based parallel implementation
that uses carefully crafted read-write locks to minimize inter-
core coordination with typical Internet power-law traffic.

3 Maestro Architecture

Maestro uses symbolic analysis to extract information on how
the NF maintains state, and with it infer possible dependen-
cies between parallel instances. This analysis is crucial to
achieve synchronization-free parallelization that shards state
by carefully splitting traffic among cores. How this careful
orchestration of packets can be used to avoid synchronization

among parallel instances is better explained via an example.

3.1 Parallelizing a firewall

Consider a firewall NF connecting a LAN and a WAN that
only forwards packets from the WAN that correspond to flows
started in the LAN. To keep track of ongoing flows, it stores
flow information in a map. Packets from the WAN lookup
flow information symmetrically relative to packets from the
LAN, naturally swapping source and destination fields.

Note that not all packets need access to all entries in the
map: only the ones belonging to the packet’s flow. As such,
in a parallel execution, making sure that packets of the same
flow are sent to the same core, conjoined with the fact that
packets of the same core are processed sequentially, allows
us to parallelize this firewall without any synchronization
between its instances—a shared-nothing architecture.

This orchestration of packets from the same flow to the
same core requires a specific RSS configuration. Not only
must we send LAN packets of the same flow to the same core,
but also their (symmetric) WAN responses. A configuration
partially fulfilling these requirements was already found by
Woo and Park [74]'. By adapting their configuration to the
firewalls’ needs, we ensure that every packet that needs access
to the same memory region is sent to the same core.

3.2

The above parallelization process is well tailored for our fire-
wall, but different NFs keep state in different ways, and thus
require different sharding solutions. Moreover, when access
to specific state precludes flow-sharding, synchronization is
necessary to maintain semantics.

Maestro deals with this parallelization process automati-
cally by using the architecture shown in Figure 1. Maestro
starts by analyzing the NF using Exhaustive Symbolic Execu-
tion (ESE) [18,45,76] to retrieve a sound and complete model
of its behavior. Then, it hands the model over to a three stage
pipeline: (1) the Constraints Generator, which uses this model
to analyze how the NF keeps its state and arrive at a sharding
solution; then (2) the RSS configuration generator stage—for
which we built a library called RS3—that uses a solver to
find an RSS configuration that steers packets following the
sharding rules found by the previous stage to the same core;
and finally (3) the Code Generator, that generates a parallel
implementation that configures the RSS accordingly and adds
additional synchronization mechanisms if needed.

Generalizing NF parallelization

"Woo and Park’s solution considers only a single RSS configuration,
whereas our firewall deals with two ports (LAN and WAN), each requiring
independent configurations. Although their findings are transposable to this
scenario, it still requires expertise from the developers.

3.3 Extracting the NF’s model

Maestro uses ESE to extract the complete NF’s model. This
allows us to not only analyze how the NF maintains its state,
but also generate modified versions of its implementation.

The extracted model is an execution tree containing all
the possible code execution paths a packet can trigger. Each
node on this graph is either conditional (representing a branch
condition), a stateful operation (representing a call to a stateful
data structure, e.g. a map or a vector), or packet operation
(e.g. forwarding, dropping, etc.). Both the packet and stateful
data are traced as symbols, and every node contains a list of
constraints on these symbols that can be given to a solver to
query their possible values under any code path.

3.4 Finding the sharding solution

The NF model is passed to the Constraints Generator, which
is tasked with finding a sharding solution that allows shared-
nothing parallelization. The idea is to find the constraints
that hold true between packets that access the same state,
i.e. packets that must be processed on the same core. This is
intrinsically tied to how the NF maintains state. For example,
in a map for two operations to access the same state they must
use the same key. By symbolically tracking how such keys
are derived from packets, we reason about the constraints on
packets that access common state.
Building a stateful report. The Constraints Generator starts
by analyzing the NF’s model and builds a stateful report
(SR) of all the performed stateful operations. Each SR entry
specifies the operation’s name (e.g. map_put), object instance,
and other relevant arguments (e.g. the key used), and all the
possible constraints on both the received packet and other
stateful data when the operation was performed (e.g. map_put
was called when a UDP packet arrived from interface 0).
Filtering entries. After building the SR, the Constraints
Generator removes all entries related to read-only objects (e.g.
routing tables that are filled on start-up and never updated).
Such read-only accesses to shared state do not require coordi-
nation among cores and need not be reasoned about. Should
all accesses be read-only, the SR will be left empty and Mae-
stro asks the Code Generator to generate a parallel implemen-
tation that uses RSS with the sole purpose of load-balancing
traffic among cores (we explain the RSS mechanism in §3.5).
Analyzing the entries. The use of any data structure can
potentially preclude a shared-nothing approach, and therefore
we need to infer the conditions under which it is safe to per-
form stateful operations concurrently for each of them (or if
no such conditions exist). We present the analysis for one of
the most predominant data structures: the map [2, 50, 50,76].
The map stores data indexed by a key. This data can be ac-
cessed via the function map_get, and modified with map_put.
Two map calls access the same memory region if and only if
they are given the same key. For a shared-nothing approach,
packets that trigger map calls to the same instance using the
same key need to be steered to the same core. This alone is,

p, p": packets mg, mq: map instances flow_id: 5-tuple without the protocol

p, p'from LAN

p.stc_ip = p'.src_ip A
p.dst_ip = p/.dst_ip A
Ip. stc_port = p’. src_portA
Ip. dst_port = p’. dst_port

LAN map_put(mg, flow_id, data)

Constraints
Generator

LAN map_get(my, flow_id, &data)

Constraints
Generator

WARNING: packet field
disjunction detected

LAN map_put(mg, p.src_ip, data) p.src_ip = p'. src_ip

Constraints
Generator

v /
p.dst_ip = p’. dst_ip

LAN map_put(m4, p.dst_ip, data)

4 Non-packet
dependency

AN, map_putimy 42 doa) g Grerior

5 Interchangeable
constraints

LAN map_put(mg, p.smac, p.src_ip)

WARNING: non-packet
dependencies detected

map_put(mg, 42, data)

Constraints
Generator

p.src_ip = p'. dst_ip

! Send to the same core LAN and WAN '
1 packets if the source IP of the former !
matches the destination IP of the latter.

'

WAN found = map_get(mg, p.dmac, &ip)

WAN
WAN

if (ip == p.dst_ip) { ... }
if (!found || ip != p.dst_ip) drop()

Figure 2: Example outputs of the Constraints Generator.

however, insufficient: we need to not only take into consid-
eration any RSS limitations, but also reason about the use
of multiple different map instances (or other data structures),
each independently tied to the previous requirement. With this
in mind, we designed a set of rules to guide Maestro towards
finding correct shared-nothing sharding solutions:

R1 Key equality. The most obvious case is when two packets
access the same map instance using the same key. In
this case, the Constraints Generator builds the constraint
from the formulas for the keys (0 in Figure 2).

R2 Subsumption. If a map instance is accessed using a subset
of the packet fields used to access a second instance, then
the subset takes precedence over its larger counterpart.
That is, the coarser-grained requirement wins over the
finer-grained one. This is exemplified in scenario 9 in
Figure 2: sending packets with the same source address
to the same core will also guarantee that packets with
the same 5-tuple are also sent to the same core. More
generally, we can always use a subset of the required
packet fields. As we will see later, this rule can act further
in concert with others to resolve incompatibilities.

R3 Disjoint dependencies. Accesses using disjoint sets of
packet fields are problematic. An NF that keeps a pair
of independent counters, one for source addresses and
another for destination addresses, requires packets with
the same source address or the same destination address
to be sent to the same core. Due to limitations in the
RSS mechanism, this is not possible: configuring it with

both the source and destination fields will guarantee
that packets with the same source and destination will
be sent to the same core. Maestro warns the user and
provides the fundamental reason why the shared-nothing
approach cannot be applied (e in Figure 2).

R4 Incompatible dependencies. RSS uses packet fields to
steer packets to cores. This means that using keys con-
taining (1) incompatible RSS packet fields or (2) no
packet fields at all will completely block our attempt at
correctly steering packets to cores. This is the case, for
example, of NFs which index data with constant keys,
as exemplified in case e of Figure 2. Again, in this
case, Maestro provides feedback to the user as to why
the shared-nothing approach is unfeasible’.

RS Interchangeable constraints. We define a pair of con-
straints as interchangeable if they trigger the same NF be-
havior. This allows us to completely replace constraints
matching rules R3 or R4 with others that, if interchange-
able, do not prohibit shared-nothing parallelization.
Example e of Figure 2 showcases this scenario. In
this example, the packet is dropped when we fail to
find the MAC address entry on the map, or whenever
the incoming IP does not match with the stored ad-
dress. Although the NF stores source addresses using an
RSS-incompatible dependency on our NIC [39] (source
MAC), the Constraints Generator finds that the NF’s be-
havior is exactly the same whether we shard on the MAC
address or the destination address. In this case, these
constraints are interchangeable, which allows Maestro
to shard on either of them. Because the former uses an
incompatible RSS field, the Constraints Generator opts
for using the latter one for sharding.

By sharding with the IP address, changing solely this
field can cause the packet to be sent to a different core.
Although it may still find a matching entry of its MAC
address on the map, it will find a different IP address
stored on that same entry, and hence the packet will be
dropped. Both not finding the MAC entry and mismatch-

ing the IP value result in the same behavior from the NF.
These rules allow Maestro to correctly find sharding so-
lutions for a wide range of NFs (as we show in §6). Note
that only R1 is specific to data structures that use a key to
index state (e.g. maps, vectors, sketches). R2, R3, R4, and R5
are otherwise data structure agnostic, and Maestro employs
them to all entries, regardless of their specific data structure.
Though much of this analysis focuses on maps, it can be used
as building blocks for others. Moreover, we need only reason
about these details once per data-structure (or, at most, each
time a breaking change is made). Once data-structure devel-
opers encode such properties into Maestro, NF developers
can freely use these stateful data structures to build their NFs.

2Maestro behaves in a similar manner when finding global counters
updated by every packet, as it bars it from implementing a shared-nothing
parallel solution.

Name | Description

map Stores integers indexed by arbitrary data.
vector | Stores arbitrary data indexed by integers.
dchain | Time-aware integer allocator.

sketch | Count-min sketch [21].

Table 1: Stateful constructors currently supported by
Maestro.

Table 1 shows the stateful constructors currently supported
by Maestro.

Even when Maestro fails to find a shared-nothing solution,

it still provides the developer the fundamental reason why
(e.g. constant keys or non-packet dependencies). When met
with this result, the developer is faced with a decision: either
use this feedback to tweak the NF implementation so that it
becomes amenable to shared-nothing parallelism, or request
a lock-based implementation from Maestro.
Generating the constraints. The next step in the Maestro
pipeline is to generate the actual constraints, i.e., the condi-
tions that, if satisfied by a pair of packets, dictate that they
must be sent to the same core. Towards this end, Maestro
iterates over each pair of report entries of the same state in-
stances, creating SMT formulas stating that both keys must
be equal, and joining them all together with logical ORs.

Finally, we note that RSS must be independently config-
ured on each interface. As such, the constraints generated
by Maestro are interface-specific, reasoning about pairs of
packets which may arrive from separate interfaces. Case e
from Figure 2 exemplifies this. It requires LAN packets to be
sent to the same core as packets from the WAN if the source
address of the former equals the destination address of the
latter.

Figure 3 shows the constraints found by the Constraint
Generator when analyzing our firewall example. It finds that
LAN packets with the same addresses and ports must be sent
to the same core, and similarly for WAN packets. It also finds
that WAN and LAN packets must be sent to the same core if
they have the same, but swapped, sources and destinations.

3.5 Finding the right RSS configuration

The previous stage tackled the challenge of finding a shared-
nothing sharding solution, producing constraints between
packets that when true require the packets to be processed
on the same core. We now focus on materializing this shard-
ing solution by automatically finding RSS configurations that
satisfy these constraints.

RSS is a hardware mechanism in the NIC that steers pack-
ets to core-specific queues. Once configured with an RSS key
and a set of packet fields, it extracts from incoming packets
the values of those fields and feeds them to a toeplitz-based
hash-function [56]. This function, depicted in Figure 4, works
by continuously left rotating the key k while iterating through
the selected packet fields bits d. The running 32-bit hash value
is XOR’ed with the current 32 least significant bits of the key
whenever the current bit d; is 1. The resulting hash is used to

LAN map_put(m1, symmetric_flow_id, data)

LAN map_put(my, flow_id, data)

WAN map_get(m1, flow_id, data)

Constraints Generator

p,p'from LAN p, p'from WAN p from LAN, p'from WAN

p.sre_ip = p'. src_ip A
p.dst_ip = p. dst_ip A
p.src_port = p'. stc_port A
p.dst_port = p'. dst_port

p.src_ip = p'. dst_ip A
p.dst_ip = p'. src_ip A
p.src_port = p’. dst_port A
p.dst_port = p. src_port

p.sre_ip = p'. src_ip A
p.dst_ip = p’. dst_ip A
p.src_port = p’.stc_port A
p.dst_port = p'. dst_port

Figure 3: From the firewall’s SR to its sharding con-
straints.

index an indirection table containing queue identifiers, and
the packet is inserted in the corresponding queue.

Two packets with the same hash will be sent to the same
core. Given the configurability of the RSS hashing function,
we use it to ensure that packets that need to be processed on
the same core will have the same hash. For simple constraints
we can arrive at a satisfying RSS configuration solely by
correctly choosing the packet field set (e.g., hashing only
source and destination IPs and ports when requiring TCP
packets with the same 5-tuple to be sent to the same core).
However, what if (1) the NF requires a subset of packet fields
that can only be used as a group in the RSS mechanism
(e.g., a traffic monitor that shards solely the destination IP),
(2) it requires complex constraints between packets (e.g., a
Hierarchical Heavy Hitter sharding on multiple subnets of
the source IP and/or source ports), or (3) there are constraints
between packets arriving in different interfaces (which is the
case for many NFs requiring both LAN and WAN interfaces,
as in NATs, Firewalls, Connection Limiters, efc.)?

To address these scenarios in a generalized way, we built
RS3, a C library capable of taking constraints as inputs and
outputting RSS configurations that satisfy them. It uses the
73 solver [23] to find suitable configurations by encoding the
problem in a logical format. Maestro uses RS3 to generate
RSS configurations that satisfy the constraints given by the
Constraints Generator module.

Building the statement. The query given to the solver needs
to encode the following problem: given set of constraints, find
RSS keys that generate the same hash for every pair of packets
that satisfy them. To build this statement, we need to encode
both the hash function and the constraints into an SMT format.

Let k be a 52 byte® RSS key, d and d’ hash inputs for each of
the packets (whose sizes depend on the extracted packet fields,
e.g. 12 bytes for source and destination IPs and ports), and
h(k,d) the 32 bit hash. Also, let |k| > |d| + |h|, H(k,k',d,d")
be true iff h(k,d) = h(k',d’), and C(d,d’) be the constraint
between d and d’ provided by the constraint generator.
Hash function. As shown in Figure 4, H (k,k’,d,d’) can be
represented as:

|A|=1 | |d| |d'|
N DUl Aklx+b]) = @P@HIAKy+b])| (D
b=0 | x=0 y=0

3Value for the Intel E810 100G NIC [39], but trivially adjustable in RS3.

Packet fields

Packet
Field

Selector

Toeplitz
hash

Figure 4: Toeplitz-based hash function.

Note that although the size of the key is lower bounded,
it should not have any influence on the feasibility of finding
a suitable hash configuration. Only a subset of its bits are
used on the hash function, and therefore constrained by our
requirements, with the other bits being free to take any value.
Base statement. Initially, let us encode the following query:
find a single key k such that, given any two hash inputs d and
d' that obey the constraints C, their corresponding hashes
will always be equal. That is:

Vaa -k#0AN[(C(d,d')Nd#d') = H(k,k,d,d")] (2)

Having the key be 0 would always output 0 valued hashes,

steering all packets to a single core, so we prevent the key
from taking that value.
Compatibility with multiple keys. Each interface can have
its RSS mechanism individually configured. With that in mind,
let C;j(d,d") be the constraint between a pair of packets com-
ing from ports i and j, configured with the keys k; and k;
respectively. Note that C;; = Cj;, therefore it is enough to
consider, for example, all the constraints C;;.¢ ;. For Equa-
tion (2) to be multi-key aware, we simply conjunct the con-
straints across all i and j, allowing the solver to manage each
key combination problem as a specific statement that must be
true. That is, for n ports:

n 1
Vaa - NN\ [(Cj(d,d')Nd #d") = H(ki,kj,d,d")] (3)
i=1j=1

Compatibility with varying sets of RSS packet fields. Just
as different ports may need distinct RSS keys, we may also
need to configure RSS to use different sets of packet fields
depending on the interface. One way to address this would
be to consider hash inputs dy, ...,d,— for n interfaces. This,
however, highly increases the complexity of the query, making
it harder for the solver to find a solution*. Another way to
look at it would be to extend the hash inputs to include the
union of both field-sets and to deal with any unused bits.
To make the statement in Equation (3) consider constraints
between packets arriving at different ports with different RSS
packet field options, we again add more clauses to our large

“4For n interfaces, and thus considering do,dy, ..., dn—1,d,,_,, with 96 bit
hash inputs we would have to deal with 2 x 96 X n free bits.

conjunction, now considering all relevant RSS field sets, all
while extracting for each one the required least significant
bits of d and d’ accordingly.

When given the constraints of our firewall, RS3 outputs two
RSS keys, one for each NIC interface. The symmetry between
the keys resembles the findings in [74], but generalized to two
interfaces, rather than just one.

3.6 Code Generator

This stage takes the generated RSS configuration, as well
as the NF’s model, and outputs a parallel implementation of
the original NF. Because the model is a sound and complete
representation of the original NF, it can be used to generate
an implementation identical in functionality to the original
one. More importantly, it can be modified to employ shared-
nothing parallelism by (1) configuring RSS, (2) allocating the
state independently for each core, (3) making sure that each
stateful call uses the data structures’ instances of that partic-
ular core, and (4) launching the NF in multiple cores. Ap-
pendix A.1 contains adapted code excerpts from our Firewall
example, showing both the sequential implementation used
as input to Maestro and the final generated parallel shared-
nothing implementation.

Parallel implementation with locking mechanisms.
When Maestro rules out a shared-nothing solution, it can fall
back to generating parallel implementations that use locking
mechanisms. In this scenario, it configures RSS with both
a random key and all the available RSS-compatible packet
fields, as now all cores share the same state.

Maestro also needs to carefully coordinate access to shared
data using read/write locks. As such, we distinguish read-
packets from write-packets: the former trigger only stateful
read operations, and the latter trigger at least one write. To
efficiently handle this scenario, we created a custom, highly
optimized read/write lock implementation that entirely avoids
cache-line sharing when acquiring read locks. We do this
with a series of per-core, cache-aligned, atomic spin-locks
that indicate whether the core has permission to proceed.
Acquiring a read lock requires just locking the current core’s
lock. To perform a write, however, one must lock all core-
specific locks (in order, to avoid deadlocks). With this in place,
we speculatively process all packets as read-only until they
attempt to perform a write operation, at which point we stop
processing, release the local lock, acquire all core-specific
locks, and restart processing the packet from the beginning.

The performance toll is minimized when an NF is subjected
to read-heavy workloads (see §6.4), as read-only packets need
only acquire a core-specific cache-aligned lock, and have no
need to atomically write to any shared variable, or write to
shared data. As all write-packets start out as read-packets
before backtracking, starvation is not an issue.

4 Implementation challenges

Finding good RSS keys. The first set of keys found by the
solver is often not ideal. If, for example, the solver finds a key

with all but the first bit set to zero, the hash, though semanti-
cally valid, will only ever be 0x0 or 0x80000000. This leads
to packets being sent to only two cores.

The solution employed by RS3 involves setting the value 1
to as many bits as possible in the keys, so long as they still sat-
isfy the given statement. This is known as a Partial MAXSAT
problem [19]. We give the solver a statement that its corre-
sponding solutions should always satisfy—Equation (3), hard
constraints—and also a set of clauses that they should try to
satisfy—soft constraints. The soft constraints correspond to a
chain of logical ANDs setting each key bit to 1. There is no
need for maximizing the number of satisfied soft constraints.
Most of the times, a randomly selected set of bits with the
value 1 is enough to avoid corner case problems like the one
mentioned above. As such, Maestro uses a slightly modified
version of the diagnosis-based approach introduced by Fu
and Malik [33]. It begins by seeding the key with random
bits. Then, if the combined hard and soft constraints are not
satisfiable, we get the UNSAT core from the solver and ran-
domly discard a subset of these soft constraints, repeating as
necessary until either a key is found or no further soft con-
straints are left, indicating that no such key exists. Due to the
randomized nature of this algorithm, we use multiple parallel
solvers to independently find keys until one is found with an
acceptable workload distribution.

NUMA considerations. In a NUMA environment, each pos-
sible combination of NIC, memory, and CPU pinning influ-
ences throughput. Our machines (see §6) have 100 Gbps NICs
with 2 interfaces, thus both interfaces are pinned to the same
NUMA node. Under these circumstances, pinning the packet
buffers to the same NUMA node as the NIC is optimal [29].

Another important consideration is that the dominant con-
tention factor in parallel packet processing applications is
the cache, specifically for Intel Data Direct I/O (DDIO) re-
sources [25,55]. Using DDIO, the packets coming from the
NIC are directly placed in the last level cache (LLC) of the
NUMA node. Contention happens when the number of con-
current packets exceeds the available reserved space for I/O
in the LLC, at which point packets evict each other and per-
formance suffers. Maestro allocates packet buffers close to
the NIC, but keeps state local to each core’s NUMA node.
Deciding where to run each thread is, however, a deployment
challenge, not an implementation one, and therefore out of
scope for Maestro. Nevertheless, our experience has taught
us a simple rule of thumb: if the LLC is large enough to hold
all packet buffers at line-rate, then we should pin both the
CPU and memory to the same NUMA node as the NIC. If,
however, the LLC is too small, resulting in contention—as
occurs with older processors—then it’s better to distribute
cores evenly across NUMA nodes, thus increasing the total
available LLC. Though we have seen scenarios where us-
ing multiple NUMA nodes was best, in our testbed the LLC
proved sufficiently large to justify using a single NUMA node,
and all our experiments in this paper follow this guideline.

Traffic skew. The expression "mice and elephants" is typi-
cally used to describe packet flow distributions on the Inter-
net [12, 36, 53]. These follow a Zipfian distribution, where
a large fraction of packets relate to but a few flows, and the
remaining ones share a small slice of traffic.

While traffic with a uniform distribution leads to packets
being uniformly distributed to cores, traffic following a Zip-
fian distribution can overload a subset of cores, causing skew.
This performance difference is shown in Figure 5, which
demonstrates how the parallel firewall throughput varies with
the traffic distribution. The Zipfian traffic was generated with
parameters from [60], which were found by analyzing a real-
world traffic sample from a University network in [12]. This
generated traffic has 50k packets and 1k flows, 48 of which
responsible for 80% of the traffic. RSS was configured with
five different random keys and the error bars represent the
min/max performance. Performance is influenced by both the
RSS key and the indirection table, as more hash collisions
cause more packets being sent to the same core. Under uni-
form traffic, the indirection table’s entries are expected to be
equally accessed, and thus uniformily filling it leads to evenly
spreading packets across cores. With Zipfian traffic, however,
the higher density of certain flows leads to more accesses to
some entries, overloading some cores. Note that when using
a single core we see better performance under Zipfian traffic
due to an increased cache hit-rate when accessing state [60],
though the effect is less prominent when more cores are used.

RSS++ [8] fixes the distribution problem imposed by Zip-
fian traffic by dynamically adjusting the indirection table
according to the traffic. It balances the indirection table by
swapping entries associated with overloaded cores for ones
associated with underloaded ones. It also provides us with
mechanisms for state migration across cores which avoid
both blocking and packet reordering. We implemented static
versions of these mechanisms in Maestro, but their dynamic
versions could be used to handle changes in skew over time.
State sharding. When applying shared-nothing paralleliza-
tion, Maestro not only allocates each data structure instance
on each core, but further adjusts each data-structure’s capacity,
keeping approximately constant the total amount of memory
used for all cores by reducing the per-core amount.

This raises an interesting question about the semantics
of filling up state in a shared-nothing parallel version of an
NF, which slightly differs from the sequential or lock-based
parallel versions. As each core now has a reduced capacity, it
is possible to exhaust the capacity of one core despite there
being spare room in others. Ultimately, when a core becomes
“full”, it will behave in the same way locally as the sequential
NF would globally (e.g. by dropping packets from new flows).
As the RSS++ mechanism redistributes flows across cores
to counteract traffic skew, this also affects state distribution,
making it harder to exhaust any one core.

This state sharding has the desirable side-effect of opti-
mizing the NF’s cache utilization. If each core has a smaller

mmmm Uniform

Mpps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of cores
Figure 5: Shared-nothing firewall under uniform and

Zipfian traffic, with and without balanced tables.

working-set, more of it will fit in the local L1+L2 data caches.
This provides an extra performance advantage to the shared-
nothing approach on top of that of parallelization on its own.
Lock-based rejuvenation. When following a read-write
lock-based parallelization approach, flow rejuvenation can be
a challenge. As simply reading state requires updating the
flow entry aging data, a naive implementation would require
a write lock for all packets, with dire consequences for per-
formance. Maestro circumvents this issue by implementing
an optimized rejuvenation algorithm that operates locally in
each core for most cases. We first modify the data-structures
to hold multiple cache-aligned copies of the entry aging data,
one per core. Each core then manages state aging locally for
each entry, allowing the age of the entries to deviate from
core to core as packets from the same flow arrive at different
cores at different times. When eventually one core believes
it should expire an entry, only then does it acquire a write
lock. At this point, the core inspects the aging data for that
entry on all cores. If the flow indeed expired on all cores, it is
cleared out globally. If, however, another core is found where
the entry has not yet expired, the local timestamp is re-synced
with the newest one. Ultimately, if packets from the same flow
regularly hit all cores, no write-locks are ever needed.
Implementation. Maestro uses the KLEE symbolic execu-
tion engine, extending it with 14,859 lines of C++ code. We
also implemented RS3 in 3,964 lines of C code, independently
from Maestro °.

5 Assumptions and limitations

NF limitations. To allow ESE, NFs must fit within some
limitations, much like the ones enumerated in [44]: i) there
must be a clean separation between stateful and stateless op-
erations, a constraint put in practice by only allowing state to
persist within a set of well-defined data structures; ii) loops
must be statically bounded; and iii) no pointer arithmetic is
allowed outside the data-structures. These constraints are al-
ready enforced for safety reasons in commonly used packet
processing framework like eBPF° [3], a widely used frame-
work in both academia and industry7 [1,10,13,17,37,52,68].
RSS limitations. For Maestro to consider other hash func-
tion besides the standard toeplitz-based one, they would have
to be formulated as an SMT problem and added to RS3. This
requires having their implementation openly disclosed.

3Qur code is openly available at [4].

®NFs developed in eBPF store their state in kernel-maintained maps [2].

"There is an ongoing effort in adapting Maestro to also accept eBPF NFs
as input (an effort already set in motion by PIX [44]).

In practice, a more limiting factor is packet field selec-
tion: shared-nothing approaches can only be applied if state
is sharded using RSS-compatible packet fields. DPDK’s
API [43] reference includes all possible field combinations
that RSS can use (e.g. IPv4/IPv6 TCP/UDP flow tuples), but
each NIC only implements a subset of them [39,40].
Attacking state sharding. We mentioned earlier that it
would be possible to “fill-up” a single core with fewer flows
in a shared-nothing parallel NF than would otherwise be
needed in the sequential or lock-based parallel versions. This
could potentially be used as a DoS attack vector, reducing the
cost for an attacker to block new flows from being admitted.
RSS++ flow redistribution addresses this for well-behaved
traffic, but an attacker can subvert this by specifically using
flows that induce exact RSS hash collisions. Colliding flows
end up on the same entry within the RSS indirection table and
thus cannot be split apart.

Though out-of-scope for this paper, Maestro provides some
defense from such attacks due to the randomization used to
generate RSS keys. Even assuming the attacker has access to
the NF source code and understands how it can be sharded
across cores, different random RSS keys that comply with the
sharding constraints will still distribute different flows in a dif-
ferent way. Without access to the actual key generated in RS3,
the attacker would have a harder time reverse-engineering a
set of co-located flows, mitigating their ability to induce the
kind of persistent skew needed in a successful attack.

6 Evaluation

In this section, we evaluate Maestro and the three different
types of parallel implementations it can generate: (1) shared-
nothing, (2) lock-based, and (3) parallel solutions using hard-
ware transactional memory [54] via the Intel’s Restricted
Transactional Memory interface [42]. We aim to answer four
questions: (i) how long does it take Maestro to parallelize
NFs? (ii) how well does the performance of these parallel
implementations scale with the number of cores? (iii) what
are the impacts on performance of the various paralleliza-
tion strategies that Maestro can use? and (iv) how do Mae-
stro’s automatic parallel implementations fare against highly-
optimized manually parallelized versions?

6.1 Target NFs and Microbenchmarks

To evaluate Maestro we analyzed 8 NFs—a simple forwarder
(NOP), a policer, a bridge, a firewall (FW), a port scan de-
tector (PSD), a NAT, a load-balancer (LB), and a connection
limiter (CL). These are open-source NFs, most are non-trivial
in complexity, and all have been used by a body of previous
work [44,45, 76]8. In this section, we present a brief descrip-
tion of each, and show how Maestro parallelizes them®. For
each NF, we measured how much time Maestro took to gener-

8 As mentioned in §5, the requirement that NFs be amenable to ESE can
prevent Maestro from analyzing many existing codebases.
9Every automatically generated parallel solution can be found on [4].

16 T T T T T T T T T
12

Time (min)
[ee]

NOP SBridgeDBridge Policer FW NAT CL PSD LB

NFs
Figure 6: Time (in minutes) to generate parallel imple-

mentations for each NF (averaged over 10 runs).

ate a parallel implementation (shared-nothing when possible,
lock-based otherwise), summarizing the results in Figure 6.
NOP. This is a simple forwarding no-operation NF, i.e. a
stateless NF that simply forwards all packets that arrive from
one interface to the other. Maestro finds that this NF has no
state, and provides no constraints between packets arriving
at the same core. RSS is thus configured with all available
packets fields and a random key on both ports.

Policer. This NF aims to limit each user’s download rate,
identifying users by their IPv4 address. When Maestro ana-
lyzes this NF, it finds that state is indexed by the destination
IP address, implying that packets with the same destination
address must be sent to the same core. Because this constraint
uses the destination IP address, the chosen RSS packet field
options must contain this field. Although DPDK allows RSS
packet field options containing only IP addresses, our NICs
do not support this option. Maestro thus chooses a packet
field option that includes IP addresses and TCP/UDP ports.
This increases the complexity of the constraints on the key,
increasing the generation time in Figure 6.

Bridge. A bridge associates MAC addresses with interfaces,
and redirects packets accordingly. In a typical MAC learning
bridge, the association between source MAC addresses and in-
put interface is learned dynamically. When analyzing this NF,
Maestro detects that state is indexed by a MAC address, which
is a field not supported by RSS on our NIC. As such, Mae-
stro warns the user that it cannot generate a shared-nothing
implementation, opting for read/write locks instead.

By modifying the NF to disable dynamic MAC learning,
leaving only statically configured MAC-Port bindings, the
NF becomes more amenable to parallelization (as all state
is read-only), albeit with reduced functionality. This further
illustrates the ability of Maestro to inform developers and
help guide the development process by pointing out relevant
trade-offs between functionality and performance. With this
in mind, we created two versions of this NF: the standard
bridge with dynamic MAC learning (DBridge) and a static
one with fixed bindings (SBridge). When analyzing SBridge,
Maestro encounters only read-only data structures, requiring
no specific constraints on the RSS configuration. As with
NOP, Maestro generates a random RSS key and uses all the
available packet fields on all ports.

FW. This is the same firewall we have been using as
a running example throughout the paper (§3.1). It indexes
state with typical flow information on the LAN (source and
destination addresses and ports), and symmetrically on the
WAN. Maestro generates a shared-nothing implementation

~ #rx, #tx

N -

Figure 7: Testbed for our experiments.

that shards state by the flow information, sending WAN pack-
ets corresponding to symmetric LAN sessions to the same
core as these (as shown in Figure 3).

PSD. A Port Scan Detector (PSD) counts how many distinct
destination TCP/UDP ports each host (source IP) has touched
within a given time frame. Above a threshold, connections
to new ports are blocked, preventing port scans. Maestro
analyzes the PSD and finds that it uses only the source IP to
access one map, but also the source IP and destination port to
access another. As such, the constraints for accessing the first
map subsume those of the second (R2) and Maestro finds an
RSS key that shards based only on source IPs.

NAT. A NAT translates addresses between a LAN and a
WAN, allowing multiple clients in the LAN to share a single
public IP in the WAN [70]. It keeps track of flows initiated
in the LAN, but to aid with translation it associates a unique
external port with each flow. Reply packets from the WAN
are checked to see if their address and port match those on
record before subsequently translating the destination address
and port to match those of the client.

Maestro notices that the NAT associates flows with external
ports using a map, fitting case R4 in §3.4. However, it also
finds an additional constraint fitting case R5: packets from the
WAN are only translated if they target the hosts that started the
session in the first place. This constraint allows for sharding
based on the external server’s IP address and port.

Much like its sequential implementation, the parallelized

NAT enforces unique ports inside each core. It does not, how-
ever, enforce this uniqueness across cores, a feature that does
not break semantic equivalence. Whereas on the sequential
implementation the allocated ports were used to distinguish
between sessions, now the sharding solution allows for pack-
ets sent to different cores (hence pertaining to different exter-
nal servers) to have the same allocated ports.
CL. A Connection Limiter (CL) aims to limit how many
connections any single client (source IP) can make to any
single server (destination IP) over a wider time frame (e.g.
several days). Given the longer time frames involved, this NF
uses a memory-efficient count-min sketch [21] to estimate
the connection count from each client to each server. For new
connections, the source and destination IPs are used to index
the sketch, indexing a configurable number of entries based
on different hashes (5 by default in our case). If all entries
surpass the connection limit, the packet is dropped, preventing
the new connection. Otherwise, each entry is incremented.

As with the PSD, Maestro finds two different access pat-
terns: the 5-tuple indexes a connection tracking map, while
the source and destination IPs index the sketch. Again, the lat-
ter constraint subsumes the former and Maestro shards based

on source and destination IPs.

LB. LB is a Maglev-like load balancer [27]. Its main goal
is to distribute traffic coming from the WAN to a series of
identical servers on the LAN. LB registers new servers when
it receives their packets coming from the LAN, and matches
packets coming from the WAN with previously registered
servers, keeping track of flows to ensure the same server
handles packets from the same flow.

In order to maintain semantic equivalency between a
shared-nothing parallel implementation and a sequential im-
plementation, packets that find an available server in the se-
quential implementation must also find it available in the
other. This ultimately means that all cores would need to have
all backends registered in their local state. That said, packets
coming in from the LAN in such a parallel implementation
would only be able to be registered in a single core, prevent-
ing packets that arrive at other cores from seeing it. With this
limitation in mind, it becomes impossible for multiple cores
to hold an identical set of backend servers without coordina-
tion, thus preventing the use of a shared-nothing model. The
Maestro analysis detects this issue when analyzing the LB
SR. Lacking a better alternative, Maestro issues a warning
and opts for a read/write lock based approach.

6.2 Performance Benchmarking Methodology

To benchmark the NFs, we use a standard testbed topol-
ogy [16], connecting a traffic generator (TG) and a device
under test (DUT), as shown in Figure 7. Both devices connect
through a top-of-rack (TOR) switch from which we collect
packet counters at the end of each experiment. Both TG and
DUT are equipped with dual socket Intel Xeon Gold 6226R @
2.90GHz, 96 GB of DRAM, and Intel E810 100 Gbps NICs.
Turbo Boost, Hyper-Threading, and power saving features
were disabled, as recommended by DPDK.

To measure throughput, the TG replays a given traffic sam-
ple (a PCAP file) in a loop at a given rate via the outbound
cable for 10s per experiment. The DUT receives this traffic,
processes it, and sends it back via the return cable, allowing
the TG to measure latency. We further use the TOR to in-
fer loss at the DUT, and—through comparison with the TG
report—to also detect when packets were lost within the TG
as well. We use DPDK-Pktgen [49] on the TG to find the
maximum rate with less than 0.1% loss. We exclude and re-
peat sporadic experiment runs where loss within the TG—as
opposed to the DUT—Iimited the results. When studying
scalability, we repeatedly reevaluate the NF, while varying the
number of cores it may use. We perform 10 measurements per
experiment for statistical relevance and show error bars with
min/max values. Our experiments properly handle NUMA
considerations and indirection table rebalancing (§4).

6.3 Picking the Workload

In this section we analyze how different workloads impact
performance, and ultimately establish the right workload con-

100 100
80 80
é_ 60 60 é
o 40 40 =
20 20

64 128 256 512 Internet 1024 1500
Packet size (bytes)

Figure 8: Throughput in Gbps (blue) and Mpps (red) of
the parallel NOP running on 16 cores for different packet
sizes.

figuration to evaluate all Maestro’s parallelization solutions.

Packet size. To measure the impact of packet size on the
performance of NFs, we ran the NOP on all cores and gener-
ated traffic with fixed-sized packets (40k uniformly distributed
flows), varying the size on each iteration. The results (Fig-
ure 8) show that typical Internet traffic [12] and large packets
easily achieve line-rate (100G), but that smaller packets strug-
gle to keep up, reaching only ~45Gbps with 64B packets—
even with such a trivial NF. Prior work [6,57,65] has pointed
out that this bottleneck comes from PCle 3.0 x16 and cannot
be overcome without improved hardware. Unless stated oth-
erwise, further experiments in this paper use 64B packets. As
we measure more complex NFs that limit throughput below
the 90Mpps shown in Figure 8, the bottleneck shifts from
PCle to the CPU, illustrating the NF’s intrinsic performance.

Churn. The performance of parallel NFs can vary signifi-
cantly for read or write workloads. In networking terms, this
typically relates to churn, or the rate at which new flows are
added and expired. This is particularly important for lock and
TM based implementations, where creating new flows can
lead to costly aborted transactions or exclusive write locks.

We start by studying these churn effects on performance by
focusing on the read/write lock-based parallel firewall, and
comparing it to its shared-nothing counterpart. To conduct
churn experiments, ideally one would generate traffic live that
changes flows periodically in an online manner. We found
it challenging to generate such traffic programmatically at
line-rate so we followed an alternative solution: generating
PCAPs with different levels of relative churn—measured in
flows/Gbit. As Pktgen varies the replay rate of the PCAP
to probe the NF, the resulting absolute churn—measured in
flows/minute or fpm—changes in tandem. This guarantees
that our experiments converge to an equilibrium where the
highest rate is found for the given churn. Once we find this
rate, we can multiply the PCAP’s relative churn with the
experimental rate to compute the absolute churn.

With this in mind, we built PCAPs which (i) were small
enough to fitin memory; (ii) changed enough flows to produce
the desired relative churn; (iii) evenly spread these changes
throughout the traffic; and (iv) were cyclic (i.e. the flows that
expire at the start of the PCAP are created at the end). We then
replay these files in a loop for 10s as in all other experiments.

Figure 9 shows how the FW—parallelized with different
approaches—scales under varying amounts of churn. As abso-
lute churn is computed based on the achieved rate, note that it
too has error bars. Under low or no churn, the lock-based FW

I_—ﬂi,’ ——p——t A——np
80 B
e e {]
60 g T 1=
S —— =, 1®»
20 °F ey —— . i
0 1 1 1 1 1
80 { .
2 604 12
g - F 18
= 40 4 —
20 N
0
28 : 21 core }gcores —o—i |
oo R v pm-a] b
40 & 4 gcores B8 16 cores FA—it
O # 1 1 1 1
0 1k 10k 100k M 10M 100M

Churn (fpm)
Figure 9: Churn study of the shared-nothing (top), lock-
based (middle), and TM (bottom) parallel firewall.

scales well until bottlenecked by PCle. At a churn of ~100k
fpm we start observing the collapse of performance as the
use of more cores just wastes more cycles busy-waiting under
exclusive write locks. Under heavy churn, performance is
abysmal as all cores end up contending for write locks. Note
that the churn limit of an NF depends on the size of packets—
Figure 9 uses 64B packets but for Internet traffic [12] the
lock-based FW handles churn up to 400k fpm.

The results also show just how badly the FW parallelized
with transactional memory handles churn. Although a useful
tool in other domains, it proves ineffective when dealing with
networked applications under churn.

The shared-nothing approach, unlike the lock-based one,
suffers almost no performance variation with churn up to
at least ~100M fpm, a great advantage over the lock-based
implementation. Benson et al. [12] tell us to expect up to 6M
fpm in typical data-center traffic—within the ability of our
shared-nothing FW, but not the lock-based one. University
networks—typically with less than 15k fpm—could easily be
handled even by our lock-based FW.

We focus the rest of this evaluation on studies without
churn, giving the lock and TM based approaches the benefit
of the doubt and illustrating their best-case performance.

6.4 Performance benchmarks

With parallel versions of each of the above 8 NFs generated,
we now evaluate their performance and scalability. By de-
fault, Maestro generates a shared-nothing implementation
when possible, falling back to read/write locks otherwise. This
choice can, however, be overriden, and Maestro can specifi-
cally generate parallel implementations using read/write locks
and TM for any of the NFs, upon request.

Parallelization technologies. We now study the perfor-
mance and scalability of each NF while being parallelized
for each of the three approaches. As per §6.3, the workload
used is composed of uniformly-distributed, read-heavy, small
packets'?. Figure 10 shows throughput as a function of the

10Experimental results using Zipfian traffic are shown in Appendix A.2

Il
Il
i

mmmm Shared-nothing === Lock-based

Tl
bl
- ennt 1]
i

o8533
Ll
NOP

[0
DBridge SBridge

N Ao
coood
I —
L

L
Policer

FW

Throughput (Mpps)
B
o

HCLH

88388
NAT

LB

8838
PSD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Figure 10: Parallel NF scalability with uniformly-
distributed, read-heavy, small packets, using a shared-
nothing approach when possible, read/write locks, and
TM. Maestro cannot do a shared-nothing DBridge or LB.

number of cores. Our raw performance is comparable to mea-
surements from other recent works [30], but we focus our
attention on scalability. Though most NFs top out their per-
formance before using all 16 cores due to bottlenecks in the
PClIe bus or the memory controller, the takeaway here is the
relative performance of the different approaches.

For all NFs where a shared-nothing approach was feasible,
this option scales linearly until bottlenecked by the PCle
bus and then plateaus—an ideal outcome. The lock-based
implementations—though slower than their shared-nothing
counterparts when available—still scale fairly well but do not
always reach the PCIe bottleneck with 16 cores'!. The Policer
shows what happens to these locks when writes are inevitable:
as every packet must update the token bucket state, every
packet requires an exclusive write lock, and performance
suffers catastrophically. Fortunately, this NF can be sharded
by IP address, so is amenable to the shared-nothing approach.

The benefits of state sharding (§4) become clear when we
compare the shared-nothing approaches with the lock-based
ones for the more state intensive NFs, i.e. the FW, NAT, CL,
and PSD. When each core holds less state due to sharding,
more of it fits in the core-local L1+L2 cache. In a shared-

TEventually, all lock-based NFs except for the Policer and CL can reach
the PCle bottleneck using extra cores from the remote NUMA node.

nothing approach where cores work independently on dif-
ferent working-sets this leads to an added performance im-
provement due to better caching, in addition to the benefits of
parallelization. As a result, performance for few (< 4) cores
can be worse than linear scalability would predict and using
many cores can have an added boost in comparison. Running
these experiments with a workload of only 256 flows—which
fits entirely in L1 cache—nullifies this effect.

A surprising takeaway is that TM does not work well with
the kinds of workloads found in more complex NFs, even
in the absence of churn. For simpler NFs it performs quite
well, scaling linearly with the number of cores, though still
operating more slowly than both shared-nothing and lock-
based alternatives. In these cases TM eventually catches up
with the other approaches, albeit needing more cores to do so.
However, for more complex NFs TM performs abysmally, as
the likelihood of a transaction aborting increases.

Ultimately, the clear winner is the shared-nothing approach,
with the best backup option consistently being our read/write
locks. The PSD—our most CPU intensive NF which stands
to gain the most from parallelization—performs 19 better
with 16 cores than a single-core version, due to the compound
effects of parallelization and improved cache efficiency.

Maestro does not deeply affect latency. We subjected all
NFs to a 1Gbps uniform background traffic of 64B packets
and collected 1000 latency probes within 10 seconds. We de-
tected no noticeable differences on the average and tail latency
values between the sequential NFs and their respective paral-
lel implementations, regardless of the adopted parallelization
strategy. Pktgen measured an average of 12 + 2us for CL and
11 £ 1us for the remaining NFs.

VPP comparison. Finally, we compare Maestro with the
Vector Packet Processing framework (VPP) [7,31], which
extends the concept of batch processing to the entire packet
processing pipeline with the purpose of increasing perfor-
mance by minimizing instruction cache misses. VPP follows
a converse approach to Maestro: packets are processed in
batches in a shared-memory parallel environment where pack-
ets can end-up on any core without regard to flows or locality.
Developers must then adapt the way they implement the NF to
those assumptions. This approach can require more expertise
and development effort, but once NFs are built in this way the
framework handles many of the low-level details.

To compare the performance of a Maestro parallelized NF
with an expertly developed one for VPP, we pitch our NAT
against the VPP nat44-ei with the DPDK plugin. These
two NFs are the most similar we found between the VPP
distribution and our corpus. We further removed a number of
features from the VPP NAT to bring their implementations
even closer together'?.

Figure 11 shows the performance comparison between

12\e removed statistical counters, disabled IPv4 checksum checking, com-
pletely removed the IPv4 reassembly feature, and finally replaced the IPv4
lookup with static forwarding.

mmmm Maestro (SN) === Maestro (Locks) mmmmm \/PP

Mpps
nN Ao
[=Nejefale]
T
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Figure 11: VPP and Maestro NAT comparison.

the parallel Maestro NAT (shared-nothing and lock-based)
and nat44-ei, all under uniformly distributed 64B packets.
Though all approaches scale well, Maestro’s shared-nothing
decisively outperforms VPP, reaching the PCle bottleneck
with 10 cores. This is due to the shared-memory design that
VPP follows. A fairer comparison would be between VPP
and the lock-based Maestro NAT, as both use shared-memory.
Here both scale more slowly, never fully reaching the PCle
bottleneck up to 16 cores. Maestro slightly outperforms VPP.
Further investigation with the perf [62] tool showed us that
although the Maestro lock-based NAT and the VPP one per-
form very similar numbers of memory reads and writes per
packet, the Maestro NAT more frequently finds the data on
L1 cache (Maestro’s 55% vs. VPP’s 46%) and has to access
RAM less frequently (Maestro’s 3% vs. VPP’s 4%). The key
takeaway though, is that Maestro’s automatically parallelized
NFs perform competitively with expertly developed, manually
parallelized NFs, without as much of a hassle.

7 Related Work

Fast packet processing. To address the performance chal-
lenges associated with software NFs, new packet I/O frame-
works were proposed [3, 15,24, 64]. To achieve high packet
processing rates these solutions explore several types of opti-
mizations including zero-copy, kernel bypass, I/O batching,
and multi-queue support [9]. VPP [7] even expands batching
to the whole packet processing pipeline in order to reduce
instruction cache misses. Most implementations of network
functions today [28,71,75,77], including those from Maestro,
rely on Intel DPDK [38], a kernel-bypass packet process-
ing framework that provides a set of software libraries and
drivers for fast packet processing, providing multi-core and
NUMA -aware functionalities.

NF acceleration. PacketMill [30] accelerates NFs by care-
fully managing packet metadata and performing code-
optimizations across the whole network stack. Another ap-
proach to improve the performance of a software NF is to
leverage the platform hardware. Previous work [26, 46, 59,
71,73] has explored multi-core CPU architectures, showing
the significant improvements they can achieve on an NF’s
performance, but also the challenges involved. Papadogian-
naki et al. [59], for instance, explored the advantages of a
shared-nothing model over a lock based implementation. The
goal of Maestro is to offer the advantages of parallelization
to NFs, for free. Although their work focused on the most
efficient utilization of available resources, we use their shared-
nothing model as guidance for automated generation of paral-
lel network functions. These solutions are manual, requiring

extensive expertise and painstaking effort from the developer.
De Carli et al. [22] proposed a concurrency model for soft-
ware IDSes that uses program analysis to infer the NF’s flow
semantics, feeding that information to a software scheduler
that steers packets to shared-nothing threads. Though the
concepts share similarities, Maestro’s approach differs from
theirs by (1) considering a wider class of NFs more generally,
rather than IDSes in particular; (2) using ESE to extract fine-
grained state access patterns, as opposed to their less granular
program-slicing approach; and (3) handling packet steering
entirely in hardware by generating RSS configurations for
NICs, avoiding the bottleneck of the software scheduler and
allowing Maestro parallelized NFs to scale better.
Flow steering. Although some NICs support rich flow-
steering configurable features [39, 58], these are orthogonal
to RSS and do not replace it. Using them to assure semantic
equivalence on a shared-nothing implementation may require
frequently adding/deleting a large amount of rules (specially
under high churn), which can heavily affect performance [47].
NF verification and synthesis. In recent years, verification
techniques have started to be applied to network functions.
Some of the most relevant work includes verification of net-
work properties [48,51], configurations [11,32], and NFs [76].
More recently, the research community has started exploring
synthesis approaches for SDN-based control [20], data plane
programs [34,61,78], and BGP configurations [14,66]. Our
work fits into this line, by analyzing sequential NFs to auto-
matically generate accelerated versions.

8 Conclusions

In this paper we presented Maestro, a tool to automatically
parallelize sequential network functions. Maestro judiciously
configures the NIC’s RSS mechanism to distribute traffic
across cores, while preserving semantics, resorting to locking
mechanisms only when necessary. Maestro significantly im-
proved performance for all the NFs we analyzed—scaling-up
performance linearly until hitting fundamental bottlenecks
in PClIe, the memory controller, or line-rate—while reducing
developer effort to the push of a button.

Acknowledgments

We are grateful to our shepherd, Tom Barbette, and the anony-
mous NSDI'24 reviewers. We thank Hugo Sadok for his
comments on earlier drafts of the paper. We also thank
Paolo Romano and Daniel Castro for their help on han-
dling the TM approaches. This work was supported by
the European Union (ACES project, 101093126), INESC-
ID (via UIDB/50021/2020), and the SALAD-Nets CMU-
Portugal/FCT project (2022.15622.CMU). Francisco Pereira
was supported by the FCT scholarship PRT/BD/152195/2021.

References

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Cilium project, 2023. https://cilium.io/.

eBPF maps, 2023. https://prototype-
kernel.readthedocs.io/en/latest/bpf/
ebpf_maps.html.

Express Data Path, 2023. https://en.wikipedia.org/
wiki/Express_Data_Path.

Maestro source code, 2023. https://github.com/
snaplab-dpss/maestro/tree/nsdi24.

Maestro’s test suit, 2023. https://github.com/
snaplab-dpss/maestro-eval/tree/nsdi24.

Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understanding
host interconnect congestion. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks, HotNets *22,
page 198-204, New York, NY, USA, 2022. Association
for Computing Machinery.

David Barach, Leonardo Linguaglossa, Damjan Mar-
ion, Pierre Pfister, Salvatore Pontarelli, and Dario
Rossi. High-Speed Software Data Plane via Vectorized
Packet Processing. IEEE Communications Magazine,
56(12):97-103, 2018.

Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,
and Dejan Kosti¢. RSS++: Load and State-Aware Re-
ceive Side Scaling. In Proceedings of the 15th Inter-
national Conference on Emerging Networking Experi-
ments And Technologies, CONEXT ’19, page 318-333,
New York, NY, USA, 2019. Association for Computing
Machinery.

Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
Userspace Packet Processing. In Proceedings of the
Eleventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’15,
page 5-16, USA, 2015. IEEE Computer Society.

David Beckett, Jaco Joubert, and Simon Horman. ACM
SIGCOMM 2018 Morning Tutorial on Host Data-
plane Acceleration (HDA). New York, NY, USA,
2018. https://conferences.sigcomm.org/sigcomm/
2018/tutorial-hda.html.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 17, page 155-168, New York, NY, USA,
2017. Association for Computing Machinery.

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’ 10, page 267-280, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

Gilberto Bertin. XDP in practice: integrating XDP into
our DDoS mitigation pipeline. In Technical Conference
on Linux Networking, Netdev, volume 2, pages 1-5. The
NetDev Society, 2017.

Rudiger Birkner, Dana Drachsler-Cohen, Laurent Van-
bever, and Martin Vechev. Config2Spec: Mining net-
work specifications from network configurations. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 969-984, Santa
Clara, CA, February 2020. USENIX Association.

Nicola Bonelli, Stefano Giordano, and Gregorio Procissi.
Network Traffic Processing With PFQ. IEEE Journal on
Selected Areas in Communications, 34(6):1819-1833,
2016.

S. Bradner and J. McQuaid. Benchmarking Method-
ology for Network Interconnect Devices. RFC 2544,
RFC Editor, 03 1999. https://tools.ietf.org/rfc/
rfc2544.txt.

Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA NICs.
In 74th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 973-990.
USENIX Association, November 2020.

Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
Proceedings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’ 08, page
209-224, USA, 2008. USENIX Association.

Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and
Shuichi Miyazaki. Local search algorithms for par-
tial maxsat. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Con-
ference on Innovative Applications of Artificial Intelli-
gence, AAAT'97/TAAT’97, page 263-268. AAAI Press,
1997.

Haoxian Chen, Anduo Wang, and Boon Thau Loo. To-
wards example-guided network synthesis. In Proceed-
ings of the 2nd Asia-Pacific Workshop on Networking,
APNet ’18, page 65-71, New York, NY, USA, 2018.
Association for Computing Machinery.

https://cilium.io/
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://en.wikipedia.org/wiki/Express_Data_Path
https://en.wikipedia.org/wiki/Express_Data_Path
https://github.com/snaplab-dpss/maestro/tree/nsdi24
https://github.com/snaplab-dpss/maestro/tree/nsdi24
https://github.com/snaplab-dpss/maestro-eval/tree/nsdi24
https://github.com/snaplab-dpss/maestro-eval/tree/nsdi24
https://conferences.sigcomm.org/sigcomm/2018/tutorial-hda.html
https://conferences.sigcomm.org/sigcomm/2018/tutorial-hda.html
https://tools.ietf.org/rfc/rfc2544.txt
https://tools.ietf.org/rfc/rfc2544.txt

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its ap-
plications. Journal of Algorithms, 55(1):58-75, 2005.

Lorenzo De Carli, Robin Sommer, and Somesh Jha. Be-
yond pattern matching: A concurrency model for state-
ful deep packet inspection. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS *14, page 1378-1390, New York,
NY, USA, 2014. Association for Computing Machinery.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Effi-
cient SMT Solver. In C. R. Ramakrishnan and Jakob
Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337-340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Luca Deri. Improving Passive Packet Capture : Beyond
Device Polling. Proceedings of SANE, 2004:85, 2004.

Mihai Dobrescu, Katerina Argyraki, and Sylvia Rat-
nasamy. Toward Predictable Performance in Software
Packet-Processing Platforms. In Proceedings of the
9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’12, page 11, USA, 2012.
USENIX Association.

Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’(09,
page 15-28, New York, NY, USA, 2009. Association
for Computing Machinery.

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’ 16, page 523-535, USA, 2016.
USENIX Association.

Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. MoonGen: A Script-
able High-Speed Packet Generator. In Proceedings of
the 2015 Internet Measurement Conference, IMC 15,
page 275-287, New York, NY, USA, 2015. Association
for Computing Machinery.

Paul Emmerich, Maximilian Pudelko, Simon Bauer, and
Georg Carle. User Space Network Drivers. In Pro-
ceedings of the Applied Networking Research Workshop,
ANRW 18, page 91-93, New York, NY, USA, 2018.
Association for Computing Machinery.

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.
Maguire Jr., and Dejan Kosti¢. PacketMill: Toward per-
Core 100-Gbps Networking. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’21, page 1-17, New York, NY, USA, 2021.
Association for Computing Machinery.

FD.io. Vector Packet Processing - One Terabit Soft-
ware Router on Intel Xeon Scalable Processor Family
Server. Technical report, 2017. https://fd.io/docs/
whitepapers/FDioVPPwhitepaperJuly2017.pdf.

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A General Approach to Network Configura-
tion Analysis. In Proceedings of the 12th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’ 15, page 469-483, USA, 2015. USENIX
Association.

Zhaohui Fu and Sharad Malik. On Solving the Par-
tial MAX-SAT Problem. In Armin Biere and Carla P.
Gomes, editors, Theory and Applications of Satisfiability
Testing - SAT 2006, pages 252-265, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch Code Generation Using Program
Synthesis. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Commu-
nication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, page 44-61, New York, NY, USA, 2020.
Association for Computing Machinery.

Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Kbhalid,
Sourav Das, and Aditya Akella. OpenNF: Enabling
Innovation in Network Function Control. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’ 14, page 163-174, New York, NY, USA,
2014. Association for Computing Machinery.

Liang Guo and I. Matta. The war between mice and
elephants. In Proceedings Ninth International Confer-
ence on Network Protocols. ICNP 2001, pages 180-188,
2001.

Toke Hpgiland-Jgrgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and

https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Technologies, CONEXT 18, page 54-66, New York, NY,
USA, 2018. Association for Computing Machinery.

Intel. Data Plane Development Kit, 2010. https://
www.dpdk.org.

Intel. Intel® Ethernet Controller E810 Datasheet, 10
2022. Version 2.4. https://www.intel.com/content/
www/us/en/content-details/613875/intel-
ethernet-controller-e810-datasheet.html.

Intel. Intel® Ethernet Controller X710/XXV710/
XL710 Datasheet, 6 2022. Version 4.1. https:
//www.intel.com/content/www/us/en/content-
details/332464/intel-ethernet-controller-
x710-xxv710-x1710-datasheet.html.

Intel. Intel data-direct I/O technology, 2023. https:
//www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html.

Intel. Restricted Transactional Memory Overview,
2023. https://www.intel.com/content/www/
us/en/docs/cpp-compiler/developer-guide-
reference/2021-8/restricted-transactional-
memory-overview.html.

Intel. RSS compatible packet fields on the DPDK RSS
API, 2023. https://github.com/DPDK/dpdk/blob/
4fceceed5b5e9fbf04acffd66239c79d81e79260/
lib/ethdev/rte_ethdev.h#L572.

Rishabh Iyer, Katerina Argyraki, and George Candea.
Performance Interfaces for Network Functions. In 719th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 567-584, Renton, WA,
April 2022. USENIX Association.

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal
Pirelli, Katerina Argyraki, and George Candea. Perfor-
mance Contracts for Software Network Functions. In
Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’ 19,
page 517-530, USA, 2019. USENIX Association.

Muhammad Jamshed, Jihyung Lee, Sangwoo Moon, De-
okjin Kim, Sungryoul Lee, and Kyoungsoo Park. Kar-
gus: A Highly-scalable Software-based Intrusion Detec-
tion System Categories and Subject Descriptors. Pro-
ceedings of the 2012 ACM Conference on Computer and
Communications Security, pages 317-328, 2012.

Georgios P. Katsikas, Tom Barbette, Marco Chiesa, De-
jan Kosti¢, and Gerald Q. Maguire. What You Need
to Know About (Smart) Network Interface Cards. In
Oliver Hohlfeld, Andra Lutu, and Dave Levin, editors,
Passive and Active Measurement, pages 319-336, Cham,
2021. Springer International Publishing.

(48]

[49]

(50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

Peyman Kazemian, George Varghese, and Nick McK-
eown. Header Space Analysis: Static Checking for
Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’12, page 9, USA, 2012. USENIX Association.

Keith Wiles. Pktgen - Traffic Generator powered by
DPDK, 2023. https://github.com/pktgen/Pktgen-
DPDK.

Junaid Khalid, Aaron Gember-Jacobson, Roney
Michael, Anubhavnidhi Abhashkumar, and Aditya
Akella. Paving the Way for NFV: Simplifying Middle-
box Modifications Using StateAlyzr. In Proceedings
of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’ 16, page 239-253,
USA, 2016. USENIX Association.

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying Network-Wide
Invariants in Real Time. volume 42, page 467-472, New
York, NY, USA, sep 2012. Association for Computing
Machinery.

Marios Kogias, Rishabh Iyer, and Edouard Bugnion. By-
passing the Load Balancer without Regrets. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC 20, page 193-207, New York, NY, USA, 2020.
Association for Computing Machinery.

Kun-chan Lan and John Heidemann. A Measurement
Study of Correlations of Internet Flow Characteristics.
Comput. Netw., 50(1):46—-62, jan 2006.

James R Larus and Ravi Rajwar. Transactional memory.
Synthesis Lectures on Computer Architecture, 1(1):1-
226, 2007.

Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,
and Justine Sherry. Contention-Aware Performance Pre-
diction For Virtualized Network Functions. In Proceed-
ings of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’°20, page 270-282, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

Microsoft Inc. RSS Hashing Functions, 2023.
https://learn.microsoft.com/en-us/windows-
hardware/drivers/network/rss-hashing-
functions.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio Lépez-Buedo, and Andrew W.
Moore. Understanding PCle Performance for End Host
Networking. In Proceedings of the 2018 Conference

https://www.dpdk.org
https://www.dpdk.org
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/613875/intel-ethernet-controller-e810-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/content-details/332464/intel-ethernet-controller-x710-xxv710-xl710-datasheet.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/restricted-transactional-memory-overview.html
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/DPDK/dpdk/blob/4fceceed5b5e9fbf04acffd66239c79d81e79260/lib/ethdev/rte_ethdev.h#L572
https://github.com/pktgen/Pktgen-DPDK
https://github.com/pktgen/Pktgen-DPDK
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-functions

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM 18, page 327-341, New York, NY,
USA, 2018. Association for Computing Machinery.

NVIDIA. Mellanox ConnectX-5 Ethernet Adapter
Card, 2020. https://network.nvidia.com/files/
doc-2020/pb-connectx-5-en-card.pdf.

Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasil-
iadis, and Sotiris Ioannidis. Efficient Software Packet
Processing on Heterogeneous and Asymmetric Hard-
ware Architectures. IEEE/ACM Transactions on Net-
working, 25(3):1593-1606, 2017.

Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh,
Jonas Fietz, and Katerina Argyraki. Automated Syn-
thesis of Adversarial Workloads for Network Functions.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’18, page 372-385, New York, NY, USA, 2018.
Association for Computing Machinery.

Francisco Pereira, Gongalo Matos, Hugo Sadok, Dae-
hyeok Kim, Ruben Martins, Justine Sherry, Fernando
M. V. Ramos, and Luis Pedrosa. Automatic Generation
of Network Function Accelerators Using Component-
Based Synthesis. In Proceedings of the Symposium on
SDN Research, SOSR °22, page 89-97, New York, NY,
USA, 2022. Association for Computing Machinery.

Perf. perf: Linux profiling with performance counters,
2023. https://perf.wiki.kernel.org.

Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System Support
for Elastic Execution in Virtual Middleboxes. In Pro-
ceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI’ 13, page
227-240, USA, 2013. USENIX Association.

Luigi Rizzo. Netmap: A Novel Framework for Fast
Packet 1/0. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX
ATC’12, page 9, USA, 2012. USENIX Association.

Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S.
Berger, James C. Hoe, Aurojit Panda, Justine Sherry,
and Ren Wang. Enso: A Streaming Interface for NIC-
Application Communication. In /7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 1005-1025, Boston, MA, July 2023.
USENIX Association.

Tibor Schneider, Riidiger Birkner, and Laurent Vanbever.
Snowcap: Synthesizing Network-Wide Configuration
Updates. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM °21, page 33-49, New

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

York, NY, USA, 2021. Association for Computing Ma-
chinery.

Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-
jit Panda, Arvind Krishnamurthy, Christian Maciocco,
Maziar Manesh, Jodo Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-recovery for mid-
dleboxes. volume 45, page 227-240, New York, NY,
USA, aug 2015. Association for Computing Machinery.

Nikita Shirokov and Ranjeeth Dasineni. Open-sourcing
Katran, a scalable network load balancer, 2018.
https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-
network-1load-balancer/.

Vishal Shrivastav. Stateful Multi-Pipelined Pro-
grammable Switches. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM °22, page
663-676, New York, NY, USA, 2022. Association for
Computing Machinery.

P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022, RFC
Editor, 01 2001. https://www.rfc-editor.org/rfc/
rfc3022.

Martino Trevisan, Alessandro Finamore, Marco Mellia,
Maurizio Munafo, and Dario Rossi. Traffic Analysis
with Off-the-Shelf Hardware: Challenges and Lessons
Learned. Comm. Mag., 55(3):163—-169, mar 2017.

Amy Viviano. Introduction to Receive Side Scal-
ing, 2023. https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling.

Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
Programming Using Algorithmic Policies. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM 13, page 87-98, New York, NY,
USA, 2013. Association for Computing Machinery.

Shinae Woo and Kyoungsoo Park. Scalable TCP session
monitoring with symmetric receive-side scaling. KAIST,
Dacejeon, Korea, Tech. Rep, 144, 2012.

Xiaoban Wu, Peilong Li, Yongyi Ran, and Yan Luo.
Network measurement for 100 GbE network links using
multicore processors. Future Generation Computer
Systems, 79:180-189, 2018.

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Mat-
teo Rizzo, Luis Pedrosa, Katerina Argyraki, and George
Candea. Verifying Software Network Functions with No
Verification Expertise. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 19,

https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://perf.wiki.kernel.org
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.rfc-editor.org/rfc/rfc3022
https://www.rfc-editor.org/rfc/rfc3022
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling

[77]

[78]

page 275-290, New York, NY, USA, 2019. Association
for Computing Machinery.

Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Kate-
rina Argyraki, and George Candea. A Formally Verified
NAT. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, S1G-
COMM 17, page 141-154, New York, NY, USA, 2017.
Association for Computing Machinery.

Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishna-
murthy. Gallium: Automated Software Middlebox Of-
floading to Programmable Switches. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM 20, page 283-295, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

A Appendix

A.1 Code excerpts from Maestro

We present here the pseudo-code of the firewall NF used
throughout the paper, both its sequential and parallel shared-
nothing implementations. These serve to provide a sense of
what the Maestro pipeline both accepts as input (Figure 12)
and automatically generates as output (Figure 13). As such,
we reiterate that these are not complete examples, but only
pseudo-code, as they were shortened and simplified for clarity
purposes. The complete solutions can be found on our public
GitHub repository [4].

Notice the symmetry of the RSS hashes (lines 7 to 25 in Fig-
ure 13), as it is what ultimately enables its shared-nothing
approach. As explained in §6.1, this symmetry allows packets
coming from the WAN to be sent to the same core as their
corresponding symmetric packets from the LAN.

A.2 Macrobenchmarks with Zipfian traffic

While in Figure 10 we show how throughput varies for differ-
ent parallelization techniques under uniform traffic, here we
repeat the experiment with Zipfian traffic instead [12] (we de-
scribe this Zipfian traffic in §4). We balanced the indirection
table for each implementation to better handle the skew, as
described in §4. The results are shown in Figure 14.

01: struct Map *flows;

03: #define LAN 0O
04: #define WAN 1

06: // Run once.

07: int init() {

08: map_init(flows, 65536);
09: }

11: // Run by each packet.
12: void process(int port, pkt_t pkt) {
13: if (port != WAN) {

14: flow_t flow = {

15: pkt.src_ip, pkt.dst_ip,
16: pkt.src_port, pkt.dst_port
17: Y},

18:

19: map_put(flows, flow, port);
20: forward(WAN) ;

21: } else {

22: flow_t inv_flow = {

23: pkt.dst_ip, pkt.src_ip,
24: pkt.dst_port, pkt.src_port
25: };

26:

27: int out_port;

28: bool found = map_get(

29: flows, inv_flow, &out_port);
30:

31: if (!found) {

32: drop();

33: } else {

34: forward(out_port);

35: }

36: }

37: }

Figure 12: Pseudo-code of the sequential firewall used as
an example throughout the paper.

01: // One map for each thread.
02: struct Map** flows;

04: #define LAN O
05: #define WAN 1

07: uint8_t RSS_HASH_PORT_0[52] = {

08: Oxal, 0x24, 0x00, 0x15, Ox00, 0x14, Oxal, 0x24,
09: 0Oxal, 0x24, 0x00, 0x14, Oxal, 0x24, 0x00, 0x15,
10: Oxa7, 0xfa, Ox11, 0x22, 0x6f, 0xd3, OxfO, 0x42,
11: 0x1b, 0x6c, Oxeb, 0x14, 0x62, 0x02, Oxa3, 0x44,
12: 0x24, 0x90, 0xf8, Oxlc, 0x43, 0x99, 0Oxe7, Oxaf,
13: 0x80, 0x73, 0x15, 0xfe, 0x29, 0x5a, 0x73, 0xdo,
14: 0x55, 0x85, 0xf2, Oxc4

15: };

17: uint8_t RSS_HASH_PORT_1[52] = {

18: 0x00, 0x14, Oxal, 0x24, 0Oxal, 0x24, 0x00, 0x15,
19: 0x00, 0x14, Oxal, 0x24, 0x00, 0x14, Oxal, 0x24,
20: Ox6a, 0Oxe3, Oxac, 0x86, 0x3e, Oxch, Ox7e, 0x73,
21: 0x83, 0x15, Oxch, 0x75, 0xc4, 0x73, Ox2c, 0Oxda,
22: oxdb, 0x05, 0x31, 0x46, 0xdb, 0xd4, 0x76, 0x5a,
23: Oxa8, 0x20, 0x9d, Ox0a, 0x44, Ox7a, Oxc6, Oxae,
24: 0x5d, 0x72, 0x34, 0Ox9c

25: };

27: // Run by each worker thread.
28: int init() {

29: unsigned core_id = rte_lcore_id();

30:

31: if (core_id == rte_get_main_lcore()) {

32: rss_configure(

33: LAN, RSS_HASH_PORT_O, IP_TCP | IP_UDP);
34: rss_configure(

35: WAN, RSS_HASH_PORT_1, IP_TCP | IP_UDP);
36: }

37:

38: map_init(flows[core_id], 65536);

39:

40:

41: // Run by each packet on a specific worker thread.
42: void process(int port, pkt_t pkt) {

43: unsigned core_id = rte_lcore_id();
44:

45: if (port != WAN) {

46: flow_t flow = {

47: pkt.src_ip, pkt.dst_ip,

48: pkt.src_port, pkt.dst_port

49: };

50:

51: map_put(flows[core_id], flow, port);
52: forward(WAN);

53: } else {

54: flow_t inv_flow = {

55: pkt.dst_ip, pkt.src_ip,

56: pkt.dst_port, pkt.src_port

57: };

58:

59: int out_port;

60: bool found = map_get(

61: flows[core_id], inv_flow, &out_port);
62:

63: if (!found) {

64: drop();

65: } else {

66: forward(out_port);

67: }

68: }

69: }

Figure 13: Pseudo-code of the firewall, but now paral-
lelized by Maestro with a shared-nothing architecture
(and described in §6.1).

The key takeaways are the same as in Figure 10: when
available the shared-nothing approach is always preferred; the
lock-based solutions frequently do not scale as well as their

mmmm Shared-nothing == | ock-based —a T™

ey o
“"Ml“ 2
20 —
0 [|
80 ,g
60 - 10
40 f -5
80 e
60 - 10
40 - 1@
t eeeahbROERERNLE
| |a
40 - 12
zgl_ml_ﬂl_ﬂl_ﬂl_ﬂl_ﬂl_ﬂlﬂlﬂl_ﬂl_ﬂl_\lﬂl_ﬂlﬂ mfn_

Throughput (Mpps)
[N} NSO
oo oOo oo oOoo
T T
1 1 L1 1 1 1 1
NAT FW

o
o
T T

o3538
PSD

\\CL\\

LB

N
W
IS
(&)
o

7 8 9 10 11 12 13 14 15 16
Number of cores

Figure 14: Parallel NF implementation scalability with
Zipfian, read-heavy, small packet traffic, using a shared-
nothing approach when possible, read/write locks, and
TM.

shared-nothing alternatives and suffer in more state-intensive
NFs; and TM-based approaches perform unreliably.

We do, however, find differences between these results and
their counterparts under uniform traffic. Although under uni-
form traffic it is rather clear that throughput scales up with
the number of cores when using the shared-nothing approach,
with Zipfian traffic this scaling is not always consistently
monotonic. This is to be expected, as the efficacy of balanc-
ing load across cores may not consistently improve when
more cores are added. Indeed, when many cores are used, a
single elephant flow can bottleneck a single core, limiting the
maximum throughput we will be able to achieve in our experi-
mental setup. This is particularly limiting for computationally
and state intensive NFs—such as the the Connection Limiter—
which are unable to perform as well with Zipfian traffic as
they do with uniform. These results nevertheless confirm that
Maestro generated NFs almost always perform as well with
Zipfian traffic as they do with uniform.

A.3 Reproducibility

We make Maestro’s code publicly available in [4]. In that
repository, one can find not only the source code for the entire
pipeline, but also the complete set of NFs we mention on this
paper, along with their corresponding parallel solutions found
by Maestro and described in §6.1.

We also make available our test suit in [5]. It contains all
the required scripts to generate Figures 5, 8 to 11 and 14.
They were tested on 2 machines with dual socket Intel Xeon
Gold 6226R @ 2.90GHz, 96 GB of DRAM, and e810 Intel
NICs [39], and running Ubuntu 22.04.

	Introduction
	Why Parallelization is Hard
	Maestro Architecture
	Parallelizing a firewall
	Generalizing NF parallelization
	Extracting the NF's model
	Finding the sharding solution
	Finding the right RSS configuration
	Code Generator

	Implementation challenges
	Assumptions and limitations
	Evaluation
	Target NFs and Microbenchmarks
	Performance Benchmarking Methodology
	Picking the Workload
	Performance benchmarks

	Related Work
	Conclusions
	Appendix
	Code excerpts from Maestro
	Macrobenchmarks with Zipfian traffic
	Reproducibility

